Смекни!
smekni.com

Контроль качества сгорания топлива в методических нагревательных печах (стр. 11 из 20)

Действительно, в момент равновесия схемы

U1=
Ul =
U2(l/z), откуда l=z(
U1/
U2) где z— длина реохорда, а l — расстояние от подвижного контакта 3 реохорда 1.

Так как при изменении давления и температуры пробы АГС, а также напряжения питания прибора

U1 и
U2 меняются по одному и тому же закону, то показания газоанализатора не за­висят от указанных факторов.

В многокамерных газоанализаторах используются чувстви­тельные элементы с наружной конвекцией, размещаемые между полюсами магнитов и ложными наконечниками.

Если рассмотренные схемные и конструктивные решения многокамерных систем в какой-то мере устраняют влияние дав­ления и температуры пробы АГС, то они не предотвращают влия­ние неопределяемых компонентов пробы АГС. Положение усугуб­ляется тем, что на чувствительные элементы действуют не только упорядоченные потоки термомагнитной конвекции, но и огромные потоки тепловой конвекции, сила которых определяется плот­ностью газа, т. е. переменной величиной, зависящей от состава пробы АГС. Причем если для кольцевых камер в отсутствие кисло­рода поток тепловой конвекции равен нулю и влияние плотности отсутствует, то в рассматриваемых многокамерных системах поток тепловой конвекции не связан с наличием кислорода в пробе АГС, он всегда имеет определенное значение и влияние плотности максимально. Для многокамерных систем характерно большое число модификаций, различающихся не только шкалами, но и, что более важно, конструкциями камер и схемными реше­ниями.

На базе многокамерных систем возможно создание модифи­кации для использования на подвижных объектах.

Потоки термомагнитной конвекции, охлаждающие рабочие ЧЭ, имеют противоположные направления. Потоки свободной теп­ловой конвекции, возникающие при наклоне камеры, суммируются с одним из потоков термомагнитной конвекции и частично компен­сируются другим потоком.

Таким образом, поскольку измеряемый эффект представляет собой сумму эффектов, реализуемых рабочими ЧЭ, то теорети­чески погрешность от влияния наклона камеры должна компен­сироваться. Практически же в газоанализаторах, в которых используется описанная конструкция камеры, например в газо­анализаторе МН-5112 (переносный), допустимое значение угла наклона, при котором возникает погрешность, не превышающая основную, составляет 45°.

Преимущество многокамерных систем — использование ми­ниатюрных малоинерционных чувствительных элементов, обеспечивающих устойчивую работу газоанализаторов в условиях механических воздействий. Инерционность таких ЧЭ не пре­вышает 30 с при крутизне номинальной статической характе­ристики 20—25 мВ на 1 % (об.) кислорода.

Многокамерные газоанализаторы выпускаются отечествен­ными приборостроительными заводами. Это газоанализаторы, в которых используется схема компаратора напряжения пере­менного тока МН-5130, МН-5121 — МН-5128, а также газо­анализаторы типов МН-5106М и МН-5110Т4.

С двухкамерными первичными преобразователями выпуска­ются газоанализаторы «Magnos 5», «Magnos 5T» фирмы «Hart-manandBraun» (ФРГ), модель 6500 фирмы GKHP (Англия), модель 7803 фирмы «LeedsandNorthrup» (ФРГ)

Четырехкамерный газоанализатор выпускает американская фирма «MineSafetyAppliancesCompany», а тдкже фирма «Sie­mens» (ФРГ).

Недостатки — сложность, низкая надежность, низкий уровень унификации, сложность технологии изготовления и наладки, не­достаточно высокие метрологические характеристики, трудность реализации частных задач, обусловленных большим диапазоном воздействия давления пробы АГС и ужесточением требований при их использовании на подвижных объектах.

Таким образом, сопоставление однокамерных (кольцевых) и многокамерных систем свидетельствует в пользу однокамерных. Вместе с тем нельзя признать кольцевую камеру единственно приемлемой для использования в базовой конструкции унифици­рованного термомагнитного газоанализатора на кислород, по­скольку и она не является универсальной.

В СССР разработана так называемая О-образная камера, обладающая рядом преимуществ по сравнению с классической кольцевой измерительной камерой.

О-образная измерительная камера состоит из двух парал­лельно расположенных стеклянных трубок с двумя секциями, выполняющих одновременно функции терморе­зисторов — термоанемометров.

Измерительная камера работает следующим образом. Проба АГС втягивается в термоанемометр, находящийся под полюсами магнитной системы. При этом газ, нагреваясь, теряет свои маг­нитные свойства и выталкивается более холодным газом, про­должающим поступать в верхнюю полость, где происходит по­стоянная смена газа.

В О-образном контуре камеры создается поток термомаг­нитной конвекции, который изменяет сопротивление секций тер­моанемометров, включенных в мостовую схему. По разбалансу моста судят о концентрации кислорода в пробе АГС.

В термоанемометрах действуют потоки термомагнитной и теп­ловой конвекции. Результирующий поток в О-образном контуре определяют по формуле:

Fк = Fм - Ft1+Ft2(33)

где FK— результирующий поток О-образного контура; Fм — поток термомаг­нитной конвекции; Ft1— поток тепловой конвекции 1-го термоанемометра; Ft2 — поток тепловой конвекции 2-го термоанемометра.

В зависимости от соотношений потоков тепловых конвекции Ft1и Ft2 при одной и той же конструкции измерительной камеры можно получить различные функциональные решения.

Так, при достижении равенства Ft1=Ft2, обеспечиваемого соответствующим симметрированием секций термоанемометров, можно достичь диапазона, нижний предел которого начинается с нуля, и достигаются условия, при которых изменение угла наклона в широком интервале не влияет на показания прибора. На самом деле, при равенстве Ft1= Ft2в О-образном контуре действует только термомагнитная конвекция, не зависящая от угла наклона. Это обстоятельство придает О-образной камере новые качества, расширяющие область ее использования.

При варьировании значением Ft2 в широких пределах можно обеспечить Fк = 0 на различных участках диапазона измерения.

При Ft1 =Ft2 нуль потоков, или Fк = 0, достигается при Fм =0, т. е. в нулевой точке диапазона измерения (концентрация кисло­рода в пробе АГС равна нулю). При изменении давления пробы АГС погрешности в этой точке диапазона измерения не появ­ляются.

Значение Fк = 0 можно реализовать и в любой другой точке диапазона измерения, обеспечив равенство Fм = Ft1Ft2 при определенной концентрации кислорода в пробе АГС.

Универсальность О-образной камеры предопределяет раз­личные варианты схем включения при неизменных параметрах самой камеры.

На рис. 13, а изображена схема включения О-образной камеры, в которой один термоанемометр расположен под магнитными наконечниками и используется в качестве измерителя, а второй термоанемометр — в качестве нагревателя для обеспечения компенсации потоков термомагнитной и результирующей тепловой конвекции в одной из точек диапазона измерения.

Рис. 13. О-образная камера:

а — с двумя термоанемометрами: одним измерительным, другим нагревательны-м; б — с двумя измерительными термоанемометрами

Для увеличения чувствительности камеры и одновременного обеспечения компенсации потоков предпочтительнее включать камеру по схеме, изображенной на рис. 23, б. Здесь оба термо­анемометра используются в качестве измерительных, а второй термоанемометр одновременно выполняет и функции нагревателя, создающего дополнительный поток тепловой конвекции для обеспечения компенсации потоков. При этом наиболее эффективно в качестве измерителя второй термоанемометр будет использо­ваться для диапазонов, нижний предел которых начинается с нуля, так как протекающий через него ток практически не отличается от тока, протекающего через первый термоанемометр, и менее эффективно для диапазонов с подавленным нулем, особенно в узких пределах измерения.

О-образная измерительная камера позволяет разработать компенсационный термомагнитный газоанализатор, обладающий более высокими метрологическими характеристиками. Принцип действия термомагнитных компенсационных газоанализаторов основан на непрерывном поддержании равенства термомагнитных и компенсирующих усилий, действующих на пробу АГС. Для тер­момагнитных компенсационных газоанализаторов, использующих тепловую конвекцию для обеспечения условий компенсации, Fк = 0 или Fм = Ft.

Преимуществами компенсационных газоанализаторов яв­ляются: полная независимость показаний от давления пробы АГС; меньшая зависимость от температуры; высокая точность; универ­сальность, т. е. возможность разработки приборов с любыми пределами измерений.