Смекни!
smekni.com

Взвешенная плавка никелевого концентрата в Печи взвешенной плавки(ПВП) (стр. 2 из 4)

Нагрев пылевых частиц и теплопередача

В начальной стадии загрузки шихты в реакционную шахту, шихта подогревается за счет тепла, получаемого ею при конвективном теплообмене с подогретым до 200 С технологическим воздухом. Воспринимаемый частицей тепловой поток описывается уравнением .

Q=a x S x t(T1-T2)

a - коэф-т передачи тепла конвекцией, ккал/м2/час

S – воспринимающая тепловой поток поверхность, м2

t - время, час

Тепла этого явно недостаточно для воспламенения сульфид­ного материала, т.к. даже сера в зависимости от содержания кислорода в газовой фазе воспламеняется в интервале температур от 260 до 360 °C. Сульфидные же частицы в зависимости от размера зерен воспламеняются при температурах от 280 до 740 С.

Опускаясь ниже, распыленная шихта попадает в зону высо­ких температур, где она за счет излучения от факела или футеровки реакционной шахты нагревается до температур воспламенения сульфидов.

Количество передаваемого тепла за счет радиационного нагрева описывается уравнением Стефана-Больцмана:

Q= S x K x t x (T1/100)4-(T2/100)4

Тепло, полученное поверхностью частицы, передается к ее центру, Передаче тепла в глубь частицы, даже если она и очень мала, осуществляется за счет теплопроводности и для случая шаровидной частицы подчиняется уравнению:

qx= Q/(4Пх2 х t)= l(Тп-Тх)/r2(1/x-1/r)

Из уравнения следует, что удельный тепловой поток к центру частицы обратно пропорционален квадрату радиуса ее. Это означает, что при малых размерах частиц, которые имеют зерна флотационных концентратов, нагрев материала будет проходить в доли секунды.

Реакции окисления сульфидов протекают со значительным выделением тепла. Так как для окисления сульфида необходим подвод кислорода в зону реакции, тo становится понятным, что эти процессы могут протекать только на поверхности зерен. Из этого следует, что на некотором отрезке времени, начиная с мо­мента воспламенения, от поверхности сульфидной частицы возникает дополнительный тепловой поток в глубь сульфидного зерна.

При воспламенении сульфидной частицы температура ее поверхности скачкообразно возрастает достигая в малые доли се­кунды 1500-1700°С. Процесс окисления сульфидов приобретает наивысшую скорость, так как в этот момент поверхность зерен максимальна, содержание кислорода в газах еще высокое и окисная пленка на поверхности сульфидного зерна только что зарож­дается. Средняя температура факела в этой зоне резко повышается до 1400°С и более за счет тепла, выделяющегося при интенсивном окислении всей массы сульфидных зерен. В зоне максимальных температур выделяется основная часть тепла экзотермических реакций плавки, т.к. именно здесь протекают с максимальными скоростями большинство реакций.

В последней зоне, называемой зоной усреднения температур, скорости всех окислительных процессов быстро падают, так как, во-первых, падает содержание кислорода в газовом потоке и, во-вторых, на поверхности окисляющихся сульфидных зерен нарастает пленка продуктов реакции, тормозящая диффузию кислорода в глубь зерна. Если на поверхности частицы образуется плотная корка твердого окисла, лишенная трещин и прочих дефектов, то диффузия кислорода через нее будет чрезвычайно затруднена и процесс окисления может прекратиться, не дойдя до конца. Рых­лые, трещиноватые пленки тормозят процесс в меньшей степени, так же, как и жидкие окисные пленки, скорость диффузии через которые примерно на три порядке выше, чем через твердую пленку. В целом процесс окисления в реакционной шахте печи лимитирует­ся диффузией кислорода через пленки продуктов реакции и обрат­ной диффузией -сернистого ангидрида в ядро газового потока.

В устье реакционной шахты окислительные реакции полностью заканчиваются. Об этом свидетельствуют результаты анализа газа на содержание свободного кислорода: парциальное давление кисло­рода на выходе из реакционной шахты снижается до 10 мм рт.ст.

Диссоциация сульфидов при плавке во взвешенном состоянии

В составе концентратов присутствуют высшие сульфиды, ко­торые диссоциируют при нагревании на низшие сульфиды и серу. Ниже приведены реакции диссоциации.

FeS2®FeS+S

Fe11S12®11FeS+S

Fe7S8®7FeS+S

3NiFeS2®3FeS+Ni3S2+1/2S2

2CuFeS2®Cu2S+2FeS+S

2CuS®Cu2S+S

3NiS®Ni3S2+S

2CuFe2S3®Cu2S+4FeS+S

2Cu5FeS4®5Cu5S+2FeS+S

В интервале температур от 550 С до 650 С первым диссоциирует пирит, давление диссоциации которого при 631°С до 0,1 атм. Наиболее устойчив борнит, диссоциирующий в температур 8400-850°С. Все реакции идут с поглощением тепла. Отщепляющаяся сера воспламеняется, в зависимости от содержания кислорода в дутье, в интервале температур 280 С-560 С.

Конечными продуктами диссоциации высших сульфидов во всех случаях являются низшие сульфиды которые в дальнейшем частично окисляются, образуя окислы соответствующих металлов переходящие в шлак.

1/2S2+O2=SO2 (без катализатора)

1/2S2+3/2O2=SO3 (с катализатором)

Ni3S2+7/2O2=3NiO+2SO2­

Cu2S+1,5O2=Cu2O+SO2­

FeS+1,5O2=FeO+SO2­

3FeS+5O2=Fe3O4+3SO2­

Неокислившиеся низшие сульфиды переходят в штейн. Окисление сульфидов сопровождается образованием больших количеств магнетита, особенно в поверхностных слоях частиц. Пере­окисление железа до магнетита зависит также от степени десуль­фуризации при плавке. С возрастанием степени десульфуризации и получением более богатых штейнов все большая часть железа переводится в форму магнетита.

К числу важнейших элементарных стадий, протекающих в от­стойной камере печи, относятся:

1) сульфидирование образовавшихся в факеле оксидов ценных металлов;

2) растворение тугоплавких составляющих (CaO, Si02, AI2О3, и MgO и др.) в первичных железистых шлаках и формирование шлака конечного состава;

3) восстановление магнетита сульфидами;

4) формирование штейна конечного состава и укрупнение мел­ких сульфидных частиц;

5) разделение штейна и шлака.

9NiO+7FeS=3Ni3S2+7FeO+SO2­

Cu2O+FeS=Cu2S+FeO

Образование фаялита

2FeO+SiO2=(FeO)2SiO2

Разложение магнетита

3Fe3O4+FeS+5SiO2=5(FeO)2xSiO2+SO2­

Плавкость сульфидов

В сравнении с окислами сульфиды являются более легко­плавкими соединениями. Температуры плавления основных сульфидов, входящих в состав медных и никелевых штейнов:

Сульфид железа 1171 С

Халькозин – 1135 С

Сульфид кобальта – 1140 С

Хизлевудит – 788 С

Эвтектические сплавы, образованные двумя различными суль­фидами, а так же эвтектики между сульфидом и его металлом более легкоплавки, чем отдельные компоненты.

Штейны при плавке сульфидных компонентов всегда является многокомпонентными системами. Составы штейнов не всегда от­вечают составам эвтектик, но тем не менее, температуры плавле­ния штейнов все же ниже, чем температуры плавления входящих в них сульфидов. Обычно при температуре 850-900°С штейны на­ходятся в жидкотекучем состоянии,

Термодинамика окислительных реакций при плавке во взвешенном состоянии

В общем виде основную реакцию, протекающую в реакционной шахте печи, можно представить следующим уравнением:

MeS+1,5О2= MeO+SO2+Q

Эта реакция экзотермическая и ее тепловой эффект вомно­гих случаях, при условии нагрева материала до температуры воспламенения, обеспечивает самопроизвольный ход процесс без затрат тепла извне.

Об интенсивности протекания той или иной реакции принято судить по величине измерения изобарно-изотермического потен­циала системы, которая выражает энергетические превращения в ходе химического процесса. При всех самопроизвольных процессах величина DZ имеет отрицательный знак, что говорит о высвобождении энергии и отдаче ее системой на сторону, В этом случае мы наблюдаем выделение тепла в ходе реакции. Чем боль­ше числовое значение DZ при отрицательном знаке, тем энер­гичнее и глубже протекает реакция. Таким образом, сравнивая между собой величиныDZ отдельных реакций, можно опреде­лить преимущественность протекания одной реакции по сравнению о другой. При положительном значении реакция не может проте­кать самопроизвольно, так как для ее совершения необходимы энергетические поступления извне,

Величина изменения изобарно-изотермического потенциала

DZ позволяет определить величину константы равновесия реакции, которая характеризует конечное состояние системы, когда в ней завершился самопроизвольный процесс и установилось равновесие между исходными и конечными составляющими реак­ции. Этасвязь выражается уравнением:

LqKкр=-DZ/RT

По величине константы равновесия можно судить о направле­нии и глубине протекания процесса.

Восстановление технологических газов угольной пылью.

Технологические газы плавки во взвешенном состоянии до восстановления имеют следующий состав:

SO2 – 12,6; H2O- 8,5; СО2- 5,5, O2- 0,7; N2- 72%; t= 1450°

Процесс восстановления сернистых газов осуществляется в аптейке печи взвешенной плавки. В качестве восстановительного реагента используют измельченный уголь с минимальным содержани­ем летучих компонентов и золы. Так как летучие компоненты представлены углеводами, тоих участие в процессе восстановле­ния технологических газов, ведущих к образованию повышенных количеств H2S, CS2 и COS, нежелательны. Повышенное содержание золы в угле приводит к увеличению количества пыли и шлака, а, следовательно, снижает извлечение цветных металлов и увеличи­вает энергозатраты. К томуже зола угля является основной причиной образования настылей в аптейке.