Наружные сферические поверхности отливок со стенкам 50-70 мм получаются с легкоотделимым пригаром в (см рис.1). Здесь сказываются усадка металла и прочность формы в горячем состоянии, чему способствует зазор. Увеличит прочность формы при высокой температуре можно добавкам в исходную смесь жидкого стекла, железных руд и других плавней. Внутренние поверхности таких отливок рекомендуется покрывать пастами или облицовками на основе циркона корунда, хромомагнезита и магнезита.
В формах из песчано-масляных и песчано-смоляных смесей отливки с толщиной стенки до 15-25 мм получаются с мало развитым пригаром. Песок в этом случае должен быть очищенным от глин и других плавней, а крепители не должны после выгорания оставлять много золы. Более толстостенные отливки следует изготовлять с применением высокоогнеупорных покрытий из маршалита, циркона (для стенок 30-60 мм) и корунда, хромомагнезита, магнезита (для стенок толщиной более 60 мм).
При превышении критического напора металла в форме следует применять либо более мелкозернистые пески, либо специальные мелкозернистые высокоогнеупорные материалы в виде покрытий и облицовок на формах. Характер атмосферы в форме после заливки при примененииперечисленных высокоогнеупорных материалов влияет менее заметно, чем при применении кварцевых песков. С увеличением окислительной способности газов лишь несколько снижается огнеупорная стойкость противопригарного покрытия, особенно на основе маршалита и циркона. Меры по устранению пригар сводятся к подбору вида покрытия в зависимости от толщины стенки. Для форм отливок с толщиной стенки 20-25 мм достаточно маршалитовых красок. Формы отливок со стенками 25-50 мм требуют покрытия красками или пастами на основе глинозема, циркона или корунда.
Формы более толстостенных отливок целесообразно покрывать пастами на основе корунда, хромомагнезита магнезита[10,1].
Для уменьшения проникновения металла в форму необходимо сократить размер пор на ее поверхности. Для этого применяются следующие методы: уменьшается размер зерновых составляющих, увеличивается уплотняемость формовочных материалов, на поверхность формы наносятся краски и применяют спекающиеся формовочные смеси. На основание этих данных проанализируем их.
3.3.1. Уменьшение размеров зерна
Зерновые составляющие изменяют сопротивление проходу пригарного вещества в глубь формы. Чтобы снизить механический пригар, прежде всего надо сократить размер пор в поверхностном слое формы. Для этого применяют более мелкие пески или в крупные и среднезернистые пески вводят мелкие фракции, в том числе пылевидный кварц[2,3,6,9,10,13].
Средняя величина зерна определяется главным образом требованиями газопроницаемости. Уменьшение газопроницаемости может быть достигнуто применением более мелкого песка и добавлением более мелких зерен к более крупным. Во втором случае можно опасаться увеличения скорости образования промежуточных пригарных соединений, что увеличивает пригар. При одинаковой газопроницаемости пригар будет меньше у смеси однородных, но более мелких зерен, по сравнению со смесью из более крупных и мелких зерен. Однако при однородном песке увеличивается опасность образования ужимин.
По влиянию количества добавляемых мелких зерен на относительный пригар можно различать три области (рис.11)[3]: I- количество добавляемых мелких зерен недостаточно и их влияние неэффективно; II-достигается наибольшая эффективность при определенном соотношении между крупными и мелкими зернами; III-ухудшаются технологические свойства главным образом за счет изменения физико-химических свойств смеси.
Влияние зернового состава на физико-химические свойства формы связано с изменением величины зерна и их минералогического и химического состава.
В работе изучалось влияние размера зерен песка на глубину проникновения металла в поры формовочной смеси.
Смесь с песком № 2 являлась стандартной, с результатами испытания которой сравнивались результаты испытаний других смесей. На Рис.13 видно, что в форму из смеси с мелкозернистым песком № 1 при различном металлостатическом давлении сталь не проникает. В форму из смеси с песком № 2 обнаруживается проникновение при давлении металла 450-650 мм, с песком № 3- при 400-650 мм, а с песком № 4 - уже при давлении 200 мм и выше. Этот опыт показал, что с повышением размера зерен песка, в связи с увеличением размера пор, уменьшается давление начала проникновения металла в поры смеси.
На Рис.14 показано влияние добавок кварцевой муки к смеси стандартного состава. Опыты показали, что при добавке кварцевой муки в количестве 20% происходит незначительное повышение минимального давления проникновения металла, глубина же проникновения при этом уменьшается.
|
Представляют большой практический интерес опыты, проведенные со смесями приблизительно одинаковой газопроницаемости (около 100 единиц), но содержащими песок с различной степенью однородности. С этой целью в однородный песок различной крупности добавлялось определенное количество кварцевой муки. Результаты этих опытов (рис.15) (показывают, что для уменьшения пригара предпочтительнее применять мелкий песок с однородными зернами. Добавки цирконовой муки, вместо кварцевой, как показывает рис.15, не уменьшают пригара.
Влияние размера зерен песка на образование механического пригара изучалось и в работе[13]. Смеси составлялись из 90% песка, 10% огнеупорной глины и 3% (сверх 100) сульфитного щелока. Зерновая часть смесей готовилась из двух песков (крупного марки К04Б и мелкого марки К016А), вводимых в смесь в различной пропорции.
Таблица 10
Влияние зернового состава песка на глубину проникновения жидкой стали в поры формовочной смеси
Состав песка в смеси, % | Газопроницаемость форм, ед. | Средняя глубина проникновения стали, мм | |
крупный | мелкий | ||
100 90 80 70 60 50 40 30 20 0 | 0 10 20 30 40 50 60 70 80 100 | 287 193 167 151 138 122 102 93 88 75 | 0, 5 0, 4 0, 3 0, 25 - 0, 18 0, 15 0, 12 0, 09 0, 07 |
Форма заливалась сталью 35Л при температуре 1620°С. Результаты опытов представленные в табл.10, показывают закономерное уменьшение глубины проникновения стали в форму по мере уменьшения крупности зерен песка.