При нагреве до 1400°С в воздухе или техническом азоте металлические стержни сразу же покрывались пленкой жидких окислов металла, которые, взаимодействуя со смесью, образовывали окисный расплав, проникавший в поры смеси па различную глубину и с различной скоростью. В зависимости от степени поглощения расплава между отливкой и формой и образовывался зазор величины, различной по площади сечения (рис8: белые пятна — зерна кварца; серое — стальной стержень, темное — зазор).
Степень окисления оценивали по остаточному диаметру металлического стержня. На рис. 4 представлен график его уменьшения в смеси 90% кварцевого песка К016 и 10% жидкого стекла с выдержкой при 1400°С на воздухе 1 и в техническом азоте 2. Изменение угла наклона кривых при 5 сек объясняется уменьшением скорости окисления в результате появления силикатного расплава, затрудняющего доступ кислорода к металлу.
В этих же атмосферах определили скорости миграции силикатных расплавов из контактной зоны в норы смеси на воздухе 1 и в азоте 2. Повышенная скорость миграции в первые 10 сек связана с механическим внедрением в смесь жидких окислов железа из-за увеличения объема стального образца при окислении. Отмеченные данные подтвердили анализ шлифов граничных слоев плит,
Таким образом, указанные величины, при прочих равных условиях, могут количественно характеризовать прочность связи пригара с отливкой. Установлено, что отделение корок пригара с одинаковой контактной площадью, но различных по составу исходной смеси или полученных при разных скоростях охлаждения отливок требует разных усилий: корки пригара, удерживаемые мостиками из закристаллизованного вещества, отделяются легче, чем связанные с
отливкой стекловидным веществом.
Механизм образования химического пригара представляется следующим образом.
|
верхностного слоя формы. Строение корки пригара в стадии в всегда соответствует легкоотделимому пригару.
3.5. Метод оценки пригара по прочности сцепления
Влияние усадки отливки на формирование пригара проявляется в том, что при отходе металла от формы, если последняя не разрушается, ширина и площадь зазора увеличивается, а при сжатии формы или стержня — наоборот (см. рис.10). Этим пригар на наружных поверхностях отливок отличается от пригара на внутренних при использовании одинаковых смесей. При механическом проникновении стали в поры формы стадия в наступает лишь после полного окисления просеченной части металла и миграции ее в виде окисного железистого расплава в глубь формы. Практически это происходит при очень длительном температурном воздействии отливки на форму в условиях окислительной атмосферы
По результатам исследований были разработаны практические рекомендации по предотвращению пригара на отливках из углеродистой стали.
При статическом напоре металла в форме из смеси на Кичигинском песке 1К0315А, не превышающем Нкр для данной смеси [2], химический пригар предотвращают так. При изготовлении отливок с толщиной стенки до 10—12 мм целесообразнее получать малоразвитый пригар (стадия, а на рис.10), для чего в смесь необходимо добавлять органические вещества, образующие восстановительные газы (битум, мазут, каменноугольная пыль и др.), замедляющие окисление металла и, следовательно, наступление стадии б в строении пригара (см. рис.10). На отливках со стенками 10—35 мм из-за большого времени воздействия высокой температуры процесс развивается до стадии трудно отделимого пригара (см. рис.10, б). Органические добавки здесь уже малоэффективны, но покрытия на основе маршалита, глинозема, циркона, корунда, алюминиевой пудры снова позволяют получать малоразвитый пригар. Отливки с толщиной стенок свыше 35 мм получаются с легкоотделимым пригаром, так как процессы переходят в стадию в.
Добавки в смесь, создающие восстановительные газы. которые могут задержать развитие процессов на стадии б, в этом случае вредны. Нежелательны глины, шпаты, шлаки и т. д., увеличивающие вязкость и снижающие скорость миграции контактного расплава в форму. Окислительная атмосферав форме или стержне при охлаждении отливки является положительным фактором, так как ускоряет все процессы, увеличивающие толщину и площадь зазора. Последнее подтверждено производственным применением кислорода для получения отливок с чистой поверхностью.
При использовании песчано-глинистых смесей для отливокс толщиной стенки до 20—25 мм из исходного песка должны быть удалены глина, пыль; в формовочной смеси не должны быть остатков жидкостекольной смеси, примесей железных руд, шпатов и других легко спекающихся плавней. Добавкав смесь малозольных веществ (мазута, раствора битума) положительные результаты. Небольшие 0, 2—2% добавки в формовочную смесь Мg2СОз, NaCI и других солей, а также замена глин бентонитами создают условия для получения;
легкоотделимого пригара. Формы и стержни отливок со стенками 25—50 мм рекомендуется покрывать красками или па стали на основе маршалита, циркона, корунда, таккакпри таких толщинах отливок наступает трудноотделимая стадия; пригара б (см. рис.10). Наружные сферические поверхности отливок со стенкам 50—70 мм получаются с легкоотделимым пригаром в (см рис.10). Здесь сказываются усадка металла и прочность формы в горячем состоянии, чему способствует зазор. Увеличит прочность формы при высокой температуре можно добавкам в исходную смесь жидкого стекла, железных руд и других плавней. Внутренние поверхности таких отливок рекомендуется покрывать пастами или облицовками на основе циркона корунда, хромомагнезита и магнезита.