Смекни!
smekni.com

Управленческое решение 2 (стр. 4 из 4)

х1=х1(а1, а2,…; у1, у2,…);

х2=х2(а1, а2,…; у1, у2,…).

Такое решение, оптимальное для данной совокупности условий у1, у2,… (и только для нее), называется локально-оптимальным. Это решение, как правило, уже не оптимально для других значений Y1, Y2,….Совокупность локально-оптимальных решений для всего диа­пазона условий Y1, Y2,… дает нам представление о том, как мы дол­жны были бы поступать, если бы неизвестные условияY1, Y2,…были нам в точности известны. Поэтому локально-оптимальное реше­ние, на получение которого зачастую тратится много усилий, имеет в случае неопределенности сугубо ограниченную ценность. Совершен­но очевидно, что в данном случае следует предпочесть не решение, строго оптимальное для каких-то определенных условий, а ком­промиссное решение, которое, не будучи, может быть, стро­го оптимальным ни для каких условий, оказывается приемлемым в целом диапазоне условий.

В настоящее время полноценной математической «теории компро­мисса» еще не существует, хотя в теории решений и имеются некоторые попытки в этом направлении. Обычно окончательный выбор компромиссного решения осуществ­ляется человеком, который, опираясь на расчеты, может оценить и со­поставить сильные и слабые стороны каждого варианта решения в раз­ных условиях и на основе этого сделать окончательный выбор. При этом необязательно (хотя иногда и любопытно) знать точный локаль­ный оптимум для каждой совокупности условий у1, у2, …. Таким об­разом, классические вариационные и новейшие оптимизационные ме­тоды математики отступают в данном случае на задний план.

В последнюю очередь рассмотрим своеобразный случай, возни­кающий в так называемых конфликтных ситуациях, когда неизвестные параметрыY1, Y2,… зависят не от объективных обстоятельств, а от активно противодействующего нам против­ника. Такие ситуации характерны для боевых действий, отчасти для спортивных соревнований, в капиталистическом обществе — для конкурентной борьбы и т. д.

При выборе решений в подобных случаях может оказаться по­лезным математический аппарат так называемой теории игр — математической теории конфликтных ситуаций. Модели конфликтных ситуаций, изучаемые в теории игр, основаны на пред­положении, что мы имеем дело с разумным и дальновидным противни­ком, всегда выбирающим свое поведение наихудшим для нас (и наилуч­шим для себя) способом. Такая идеализация конфликтной ситуации в некоторых случаях может подсказать нам наименее рискованное, «перестраховочное» решение, которое необязательно принимать, но, во всяком случае, полезно иметь в виду.

Наконец, сделаем одно общее замечание. При обосновании реше­ния в условиях неопределенности, что бы мы ни делали, элемент не­определенности остается. Поэтому неразумно предъявлять к точности таких решений слишком высокие требования. Вместо того, чтобы пос­ле скрупулезных расчетов однозначно указать одно-единственное, в точности оптимальное (в каком-то смысле) решение, всегда лучше вы­делить область приемлемых решений, которые оказываются несущественно хуже других, какой бы точкой зрения мы ни пользо­вались. В пределах этой области могут произвести свой окончатель­ный выбор ответственные за него лица.

Лицо, принимающее решение.

ЛПР – Лицо Принимающее Решение.

В Системах Управления помогает задача о ранце (размещении в нем), похожая на задачу о коммивояжере.

Методы ППР дают возможность:

· Формализовать процесс нахождения решения на основе имеющихся данных (процесс порождения вариантов решения).

· Ранжировать критерии и давать критериальные оценки физическим параметрам, влияющим на решаемую проблему (дает возможность оценить варианты решений).

· Использовать формализованные процедуры согласования при принятии коллективных решений.

· Использовать формальные процедуры прогнозирования последствий принимаемых решений.

· Выбирать вариант, приводящий к решению проблемы.

Поддержка Принятия Решений (ППР).

Процесс ПР – получение и выбор наиболее оптимальной альтернативы с учетом просчета всех последствий.

При выборе альтернатив – надо выбирать ту, которая наиболее полно отвечает поставленной цели, но при этом приходится учитывать большое количество противоречивых требований и, следовательно, оценивать выбранный вариант решения по многим критериям.

Можно выделить 3 класса неопределенностей:

1. Неопределенности, связанные с неполнотой наших знаний о проблеме по которой принимается решение.

2. Неопределенность, которая возникает в связи с непредсказуемостью реакции окружающей среды на наши действия.

3. Неопределенность – неточно понимаются цели непосредственно самим ЛПР.

Сложности:

Нельзя свести задачи с неопределенностью к формализованным, поэтому надо делать поправку на субъективность эксперта.

Тенденция. - Количество факторов растет. Время на анализ снижается.

ППР заключается в следующем:

· Помощь ЛПР при анализе объективной составляющей проблемы.

· Выявление предпочтений ЛПР

· Учет неопределенности в оценках ЛПР.

· Генерация набора решений.

· Оценка возможных решений, исходя из предпочтений ЛПР и ограничений, накладываемых внешней средой.

· Анализ последствий принимаемых решений.

· Выбор лучшего с точки зрения ЛПР решения.

Список использованной литературы:

1. Смирнов Э.А. Разработка управленческих решений. М.: ЮНИТИ-ДАНА, 2000.

2. Ременников В.В. Разработка управленческого решения. М.: ЮНИТИ-ДАНА, 2000.

3. Балдин К.В., Воробьев С.Н., Уткин В.Б. Управленческие решения. М.: ЮНИТИ-ДАНА, 2003.

4. Литвак Б.Г. Управленческие решения, 1988.