Поверхность Сатурна (облачный слой), как и Юпитера, не вращается как единое целое. Тропические области в атмосфере Сатурна обращаются с периодом 10 ч 14 мин земного времени, а на умеренных широтах этот период на 26 мин больше.
1.2. ВНУТРЕННЕЕ СТРОЕНИЕ
По внутреннему строению и составу Сатурн сильно напоминает Юпитер.
В глубине атмосферы Сатурна растут давление и температура, и водород постепенно переходит в жидкое состояние. Чёткой границы, отделяющей газообразный водород от жидкого, по-видимому, не существует. Это должно выглядеть как непрерывное кипение глобального водородного океана. На глубине около 30 тыс. км водород становится металлическим (а давление достигает около 3 миллионов атмосфер). Протоны и электроны в нём существуют раздельно и он является хорошим проводником электричества. Мощные электротоки, возникающие в слое металлического водорода, порождают магнитное поле Сатурна (гораздо менее мощное, чем у Юпитера).
На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты находится массивное ядро (до 20 земных масс) из камня, железа и, возможно... льда (в области ядра) температура порядка 20000 К.
Откуда взяться льду в центре Сатурна, где температура около 20 тыс. градусв? Ведь хорошо знакомая нам кристаллическая форма воды - обыкновенный лед - плавится уже при температуре 0 С при нормальном атмосферном давлении. Еще "нежнее" кристаллические формы аммиака, метана, углекислого газа, которые ученые также называют льдом. Например, твердая углекислота (сухой лед, используемый в различных эстрадных шоу) при нормальных условиях сразу же переходит в газообразное состояние, минуя жидкою стадию.
Но одно и то же вещество может образовывать различные кристаллические решетки. В частности, науке известны кристаллические модификации воды, отличающиеся друг от друга не меньше, чем печная сажа - от химически тождественного ей алмаза. Например, так называемый лед VII имеет плотность, почти вдвое превосходящую плотность обычного льда, и при больших давлениях его можно нагревать до нескольких сот градусов! Поэтому не стоит удивляться тому, что в центре Сатурна при давлении в миллионы атмосфер присутствует лед, т.е. в данном случае смесь из кристаллов воды, метана и аммиака.
2. АТМОСФЕРА
Светло-желтый Сатурн внешне выглядит скромнее своего соседа - оранжевого Юпитера. У него нет столь красочного облачного покрова, хотя структура атмосферы почти такая же. Верхние слои атмосферы Сатурна состоят на 93 % из водорода (по объёму) и на 7 % — из гелия. Имеются примеси метана, водяного пара, аммиака и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских, что делает его не таким "цветным" и полосатым.
По данным «Вояджеров», на Сатурне дуют самые сильные ветра в Солнечной системе, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветра дуют, в основном, в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что ветры не ограничены слоем верхних облаков, они должны распространяться внутрь, по крайней мере, на 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветра в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.
Южное полушарие Сатурна. "Ураган Дракона", он хорошо виден на этом изображении, полученном в ближней ИК-области (цвета на рисунке искусственные). Исследуя результаты, полученные Кассини, ученые обнаружили, что "Ураган Дракона" является причиной таинственных вспышек в радиодиапазоне. Возможно, мы видим гигантскую грозу на Сатурне, когда радиошум возникает из-за высоковольтных разрядов в молниях
Хотя пятна атмосферных вихрей на Сатурне уступают по размерам юпитерианскому Большому Красному Пятну, но и там наблюдаются грандиозные штормы, видимые даже с Земли.
Снимки, переданные АМС "Вояджер-1", обнаружили несколько десятков поясов и зон, а также различные конвективные облачные образования: несколько сот светлых пятен диаметром 2000 - 3000 км, коричневые образования овальной формы шириной ~10000 км и красное овальное облачное образование (пятно) у 55° ю. ш. Протяженность красного пятна на Сатурне 11 000 км, по размерам оно примерно равно белым овальным образованиям на Юпитере. Красное пятно на Сатурне относительно стабильно. Оно окружено темным кольцом. Полагают, что оно может представлять собой "верх" конвективной ячейки. Считают, что полосы в атмосфере Сатурна обусловлены температурными перепадами. Число полос достигает нескольких десятков, то есть намного больше, чем наблюдают с Земли, и больше, чем было обнаружено в атмосфере Юпитера. Ученые ожидали найти на Сатурне условия, сравнимые с условиями на Юпитере, поскольку в метеорологических явлениях обеих планет доминирующим фактором является нагрев за счет внутреннего источника тепла, а не поглощения солнечной энергии. Однако атмосферы Сатурна и Юпитера оказались весьма различными. Например, на Юпитере наибольшие скорости ветра зарегистрированы вдоль границ полос, а на Сатурне - вдоль центральной части полос, в то время как на границах полос и зон ветер практически отсутствует. В поясах и зонах атмосферы Юпитера чередуются западные и восточные потоки, которые разделяются областями сдвига. В отличие от этого, на Сатурне обнаружен западный поток в очень широкой полосе от 40° с. ш. до 40° ю. ш. Согласно одной гипотезе, ветры обусловлены циклическим подъемом и опусканием больших облаков аммиака. Южная полярная область Сатурна сравнительно светлая. В северной полярной области обнаружена темная шапка. Возможно, это указывает на сезонные изменения, которых на Сатурне не ожидали. Один профиль температуры, полученный для северного полушария Сатурна, показывает, что темные пятна соответствуют сравнительно высокой температуре, а большие светлые области - несколько более низкой.
Получены новые сведения об облаке нейтрального водорода, окружающего Сатурн в той же плоскости, в которой лежат кольца планеты и обращаются ее спутники. Ранее ученые предполагали, что это облако тороидальной формы расположено вдоль орбиты Титана и имеет своим источником атмосферу Титана, где происходит диссоциация метана с освобождением водорода. Однако ультрафиолетовый .спектрометр АМС "Вояджер-1" показал, что облако расположено не вдоль орбиты Титана, а простирается с расстояния 1,5 млн. км от Сатурна (несколько дальше орбиты Титана) до расстояния 480 тыс. км от нее (район орбиты Реи). Общая масса облака 25000 т, что согласуется с имеющимися теориями; плотность всего 10 атомов в 1 см3.
В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы. Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).
Не до конца понятным на сегодняшний день остается такой атмосферный феномен Сатурна, как «Гигантский гексагон». Он представляет собой устойчивое образование в виде правильного шестиугольника с поперечником 25 тыс. километров, которое окружает северный полюс Сатурна.
В атмосфере обнаружены мощные грозовые разряды, полярные сияния, ультрафиолетовое излучение водорода.
2.1. «ГИГАНТСКИЙ ГЕКСАГОН»
Гигантский гексагон — на сегодняшний день не имеющий строгого объяснения атмосферный феномен на планете Сатурн. Представляет собой геометрически правильный шестиугольник с поперечником в 25 тыс. километров, находящийся на северном полюсе Сатурна. По всей видимости, гексагон является довольно необычным вихрем. Прямые стены вихря уходят вглубь атмосферы на расстояние до 100 км. При изучении вихря в инфракрасном диапазоне наблюдаются светлые участки, представляющие собой гигантские прорехи в облачной системе, которые простираются, как минимум, на 75 км. вглубь атмосферы.
Впервые эта структура была замечена на ряде снимков, переданных аппаратами Вояджер-1 и Вояджер-2. Поскольку объект ни разу не попал в кадр полностью и из-за низкого качества снимков, то серьёзного изучения гексагона не последовало.
Реальный интерес к Гигантскому гексагону появился после передачи его снимков аппаратом «Кассини». Тот факт, что объект снова замечен после миссии Вояджеров, проходившей более четверти века назад, говорит о том, что гексагон представляет собой довольно устойчивое атмосферное образование.
Полярная зима и удачный угол обзора дали специалистам возможность рассмотреть глубинную структуру гексагона.
Предполагается, что гексагон не связан с авроральной активностью планеты или её радиоизлучением, несмотря на то, что структура расположена внутри аврорального овала.
Вместе с тем, объект, по данным «Кассини», вращается синхронно с вращением глубинных слоёв атмосферы Сатурна и, возможно, синхронно с её внутренними частями. Если гексагон неподвижен относительно глубинных слоёв Сатурна (в отличие от наблюдаемых верхних слоёв атмосферы в более низких широтах), он может послужить опорой в определении истинной скорости вращения Сатурна.