2) аналоговая модель (представляет исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой. Пример аналоговой модели – организационная схема. Выстраивая ее, руководство в состоянии представить себе цепи прохождения команд и формальную зависимость между индивидами и деятельностью. Такая аналоговая модель явно более простой и эффективный способ восприятия и проявления сложных взаимосвязей структуры крупной организации, чем, скажем, составление перечня взаимосвязи всех работников);
3) математическая модель (в этой модели, называемой также символической, используются символы для описания свойств или характеристик объекта или события).
Построение модели является процессом. Основные этапы этого процесса – постановка задачи, построение, проверка на достоверность, применение и обновление модели.
Постановка задачи. Первый и наиболее важный этап построения модели, способный обеспечить правильное решение управленческой проблемы, состоит в постановке задачи. Правильное использование математики или компьютера не принесет никакой пользы, если сама проблема не будет точно диагностирована. Правильная постановка задачи важнее даже, чем ее решение. Для нахождения приемлемого или оптимального решения задачи нужно знать, из чего она состоит. Как ни просто и прозрачно данное утверждение, чересчур многие специалисты игнорируют очевидное. Миллионы долларов расходуются ежегодно на поиски элегантных и глубокомысленных ответов на неверно поставленные вопросы. Далее, из того только, что руководитель осведомлен о наличии проблемы, вовсе не следует факт идентификации истинной проблемы. Руководитель обязан уметь отличать симптомы от причин.
Построение модели. После правильной постановки задачи следующим этапом процесса предусмотрено построение модели. Разработчик должен определить главную цель модели, какие выходные нормативы или информацию предполагается получить, используя модель, чтобы помочь руководству разрешить стоящую перед ним проблему. Также необходимо определить какая информация требуется для построения модели, удовлетворяющей этим целям и выдающей на выходе нужные сведения.
Проверка модели на достоверность. После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить – все ли существенные компоненты реальной ситуации встроены в модель. Проверка многих моделей управления показала, что они не совершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средство оказания помощи руководителю в принятии хорошего решения, если предположить, что модель не слишком сложна в использовании. Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью действительно, помогает руководству совладать с проблемой.
Применение модели. После проверки на достоверность модель готова к использованию. Ни одну модель науки управления нельзя считать успешно выстроенной, пока она не принята, не понята, и не применена на практике. Это кажется очевидным, но зачастую оказывается одним из самых тревожных моментов построения.
Обновление модели. Даже если применение модели оказалось успешной, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных не ясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на принятие решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении – например, появление новых потребителей, поставщиков или технологий – может обесценить допущение исходную информацию, на которых основывалась модель при построении.
Как все средства и методы, модели могут привести к ошибкам. Эффективность модели может быть снижена действием ряда потенциальных погрешностей:
- недостоверные исходные допущения (любая модель опирается на некоторые исходные допущения и предпосылки). Это могут быть поддающиеся оценке предпосылки, которые можно объективно проверить и просчитать. Некоторые предпосылки не поддаются оценке и не могут быть объективно проверены. Никто не знает наверняка, произойдет ли это действительно. Поскольку такие предпосылки являются основой модели, то точность последней зависит от точности предпосылок. Модель нельзя использовать для прогнозирования (например, потребности в запасы, если неточны прогнозы сбыта на предстоящий период).
- информационные ограничения (основная причина недостоверности предпосылок и других затруднений – это ограниченные возможности в получении нужной информации, которые влияют и на построение и на использование моделей). Точность моделей определяется точностью информации по проблеме. Построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая информация настолько неопределенна, что ее трудно получить, исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и помощь консультантов).
- страх пользователей (модель нельзя считать эффективной, если ею не пользуются). Основная причина не использования модели заключается в том, что руководители, которым она предназначена, могут не вполне понимать получаемые с помощью модели результаты и потому боятся ее применять).
- слабое использование на практике (согласно ряду исследований уровень методов моделирования в рамках науки управления превосходит уровень использования модели). Одна из причин такого положения дел – страх. Другие причины – это недостаток знаний и сопротивление переменам. Данная проблема подкрепляет желательность того, чтобы на стадии построения модели штабные специалисты привлекали к этому делу пользователей. Когда люди имеют возможность обсудить и лучше понять вопрос, метод или предполагаемое изменение, их сопротивление обычно снижается).
- чрезмерная стоимость (выгоды от использования модели должны с избытком оправдывать ее стоимость). При установлении издержек на моделирование руководству следует учитывать затраты времени руководителей высшего и низшего уровней на построение моделей и сбор информации, расходы и время на обучение, стоимость обработки и хранения информации.
Глава 2. Методология принятия решений
Существует несколько методов принятия решений: интуитивный, формально-логический, научные методы (особое внимание удилено экономико-математическому моделированию).
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.
Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений.
Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.
Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.
Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.
Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.
Глава 3. Сущность экономико-математического моделирования, как метода принятия решений
3.1 Экономико-математическое моделирование
Основным методом исследования систем является метод моделирования, т. е. способ теоретического анализа и практического действия, направленный на разработку и использование моделей. При этом под моделью будем понимать образ реального объекта в материальной или идеальной форме, отражающий существенные свойства моделируемого объекта и замещающий его в ходе исследования и управления. Объектом является социально-экономическая система. Метод моделирования основывается на принципе аналогии, т.е. возможности изучения реального объекта не непосредственно, а через рассмотрение подобного ему и более доступного объекта, его модели.