Смекни!
smekni.com

Принципы регулирования (стр. 9 из 10)

Для схемы а) Wск.(p) = Wпосл.(p) Wисх.(p)

б) Wск(p)=

Из выражения (а)

Из выражения (б)

Формулы (*) и (**) являются формулами перехода от одного вида корректирующего устройства к другому.

Корректирующие средства являются основным способом повышения качества линейных непрерывных систем. Иногда в системе используют два корректирующих устройства: последовательное и параллельное, таким образом, функции, которые должны выполнять корректирующие устройства, распределяются между двумя корректирующими устройствами. Они могут быть выполнены из более простых элементов.

А. Последовательная коррекция

§ 1. Введение производной в прямую цепь регулирования.

Проще всего вводится производная в прямую цепь регулирования с помощью идеального дифференцирующего звена Wпосл.(p) = кр.

Но такое звено делает скорректированную систему в статике разомкнутой, т.к.

поэтому такая коррекция неприемлема.

Производную вводят в прямую цепь регулирования с помощью пропорционально – дифференциального звена.

которое может быть реализовано следующей структурной схемой:


т.е. статический коэффициент передачи этого звена равен 1 и пропорционально– дифференциальное звено не изменяет статику системы.

Влияние этого звена на динамику системы рассмотрим на амплитудно–фазо–частотных характеристиках, исходной и скорректированной систем.

Пусть

а

АФЧХ скорректированной системы получается путём перемножения АФЧХ исходной системы и АФЧХ корректирующего звена. Для получения АФЧХ скорректированной системы необходимо перемножить вектора исходной системы и корректирующего звена в комплексной плоскости на частотах от 0 до ¥ (при перемножении векторов в комплексной плоскости их модули перемножаются, а фазы складываются см. рис.)

Как видно из рисунка, АФЧХ скорректированной системы как бы повернулась против часовой стрелки, тем самым в скорректированной системе увеличился запас устойчивости по амплитуде и фазе.

Если p1,p2,p3 – отрицательные действительные корни характеристического уравнения разомкнутой исходной системы, то её передаточная функция может быть записана в виде:

Wисх(Р) =

,

а переходная характеристика этой системы изображена на рисунке (кривая 1)

Пусть Wпосл.1(р)=Т1р+1, тогда

Wск.1(p)=

, а

hск.1 – кривая 2.

Wпосл.2(р)=Т2р+1, тогда

Wск.2(р)=

, а hск.2-кривая 3.

Wпосл.3(р)=Т3р+1, Wск.3(р)=Кисх (4)

Как видно из рисунка, последовательное корректирующее звено увеличивает быстродействие системы.

§2. Введение интеграла в прямую цепь регулирования.

Интеграл вводим в прямую цепь регулирования с помощью идеального интегрирующего звена.

Wпосл(р)=k/p

Такое звено улучшает статику системы, т.к. уменьшает статическую системы до нуля (если в прямой цепи системы не было больше интегрирующих звеньев) (см. способы уменьшения статизма). Если же такое звено входило в передаточную функцию исходной САР, скорректированная система становится структурно неустойчивой.

Динамика системы может быть прослежена на амплитудно-фазо-частотных характеристиках исходной и скорректированной систем.

Кисх(jω)=

,

Кпосл(jω)=

=

Как видно из рисунка, АФЧХ скорректированной системы как бы повернулась по часовой стрелке, тем самым уменьшился запас устойчивости скорректированной системы по амплитуде и фазе, т.е. динамика системы ухудшилась.

§3. Введение в прямую цепь регулирования безинерционного звена.

В этом случае Wпосл(р)=k, причём k может быть больше 1 или меньше 1. При введении звена, коэффициент передачи которого больше 1, статизм скорректированной системы уменьшается, а звена с коэффициентом передачи меньше 1, статизм скорректированной системы увеличивается. ( см. Способы уменьшения статизма).

Динамика скорректированной системы может быть рассмотрена на амплитудно-фазо-частотных характеристиках исходной и скорректированной систем.

Кисх(jω)=

, а Кпосл(jω)=k=k·℮j0 т.е. это корректирующее звено не изменяет фазу исходной системы.

Если Кпосл<1, АФЧХ скорректированной системы находится внутри АФЧХ исходной системы и запас устойчивости в этом случае увеличивается, динамика улучшается (статика ухудшается). Если же Кпосл>1, то запас устойчивости скорректированной системы уменьшается, динамика ухудшается (статика улучшается).

В. Параллельная коррекция

§4. Охват инерциального звена жёсткой отрицательной обратной связью.


Для определения влияния такого корректирующего звена на структуру системы, статику и динамику системы, найдём Wэкв(p).

Wэкв(p)=
=
=
=

=

=
, где kэкв=
< k, при любом kпар

Тэкв=

< Т, при любом kпар.

1. Эквивалентное звено является инерционным звеном первого порядка, следовательно, структура системы не меняется.

2. Коэффициент передачи звена, а следовательно и коэффициент передачи скорректированной системы уменьшается при любом kпар, т.е. увеличивается запас устойчивости системы и одновременно увеличивается статизм системы.

3. Уменьшается постоянная времени звена, увеличивается его быстродействие, а следовательно и быстродействие системы.

§5. Охват инерционного звена второго порядка жёсткой отрицательной обратной связью.


1. Структура звена, а следовательно и структура системы не изменяется.

2. Уменьшается коэффициент передачи звена, а следовательно и системы, увеличивается запас устойчивости системы и увеличивается её статизм.

3. Уменьшается постоянные времени звена, увеличивается его быстродействие и быстродействие системы.

4. Уменьшается коэффициент затухания звена d и при некотором значении kпар может стать меньше 1, а звено колебательным, что может привести у ухудшению переходного процесса.