Эти критерии можно использовать поочередно, причем после вычисления их значений среди нескольких вариантов приходится произвольным образом выделять некоторое окончательное решение. Что позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабить влияние субъективного фактора.
Классические критерии принятия решений.
1.1. Минимаксный критерий (ММ) использует оценочную функцию ZММ, соответствующую позицию крайней осторожности.
ZММ=max eirи eir=min eij.
гдеzmm— оценочная функция ММ-критерия.
Поскольку в области технических задач построение множества Е вариантовуже само по себе требует весьма значительных усилий, причем иногда возникает необходимость в их рассмотрении с различных точек зрения. Оно должно напоминать о том, что совокупность вариантов необходимо исследовать возможно более полным образом, чтобы была обеспечена оптимальность выбираемого варианта.
Правило выбора решения в соответствии с этим критерием можно интерпретировать следующим образом:
Матрица решений дополняется еще одним столбцом из наименьших результатов eir каждой строки. Выбрать надлежит те варианты Eio, в строках которых стоят наибольшие значения eir этого столбца.
Выбранные таким образом варианты полностью исключают риск. Это означает, что принимающий решение не может столкнуться с худшим результатом,чем тот, на который он ориентируется. Какие бы условия Fjни встретились, соответствующий результат не может оказаться ниже Zмм. Это свойство заставляет считать минимаксный критерий одним из фундаментальных. Поэтому в технических задачах он применяется чаще всего, как сознательно, так и неосознанно. Однако положение об отсутствии риска стоит различных потерь.
1.2. Критерий Сэвиджа.
С помощью обозначения
аij=max eij – eij – это eir=maxaij = max(max eij-eij),
формируетсяоценочнаяфункция
Zs=min eir = min [max (maxeij – eij)]
Соответствующее правило выбора теперь интерпретируется так:
Каждый элемент матрицы решений вычитается из наибольшего результата соответствующего столбца. Эти разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей eir. Выбираются те решения Еio, в строках которых стоит наименьшее значение для этого столбца
и строится множество оптимальных вариантов решения
Для понимания этого критерия определяемую соотношением величину aij = max eij - eij можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Fjвместо варианта Ei выбрать другой, оптимальный для этого внешнего состояния вариант. Мы можем, однако, интерпретировать aij и как потери (штрафы), возникающие в состоянии Fiпри замене оптимального для него варианта на вариант Ei. Тогда определяемая соотношением величина eir представляет собой — при интерпретации аij в качестве потерь—максимальные возможные (по всем внешним состояниям Fj, j==1, ..., n) потери в случае выбора варианта Ei. Эти максимально возможные потери минимизируются за счет выбора подходящего варианта Ei.
Соответствующее S-критерию правило выбора теперь интерпретируется так:
каждый элемент матрицы решений ||eij|| вычитается из наибольшего результата max eij соответствующего столбца.
Разности aij образуют матрицу остатков ||aij|| Эта матрица пополняется столбцом наибольших разностей eir. Выбираются те варианты Eio, в строках которых стоит наименьшее для этого столбца значение.
По выражению оценивается значение результатов тех состояний, которые, вследствие выбора соответствующего распределения вероятностей, оказывают одинаковое влияние на решение, с точки зрения результатов матрицы ||eij|| S-критерий связан с риском, однако, с позиций матрицы ||aij|| он от риска свободен.
1.3. Критерий Байеса-Лапласа.
Этот критерий учитывает каждое из возможных следствий. Пусть qj – вероятность появления внешнего состояния Fj, тогда для этого критерия оценочная функция запишется так:
ZBL=max eir, eir= åeijqj.
Тогда правило выбора будет записано так:
Матрица решений дополняется еще одним столбцом, содержащим математическое ожидание значений каждой из строк. Выбираются те варианты Eio, в строках которых стоит наибольшее значение eir этого столбца.
1.4. Расширенный минимаксный критерий.
В нем используются простейшие понятия теории вероятностей, а также, в известном смысле, теории игр. В технических приложениях этот критерий до сегоднешнего времени применяется мало.
Основным здесь является предположение о том, что каждому из n возможных внешних состояний Fj приписана вероятность его появления : 0< q<1.
Тогда расширенный ММ-критерий формулируется следующим образом:
где р—вероятностный вектор для Ei, a q—вероятностный вектор для Fj.
Таким образом, расширенный ММ-критерий задается целью найти наивыгоднейшее распределение Eiвероятностей на множестве вариантов,когда в многократно воспроизводящейся ситуации ничего не известно о вероятностях состояний Fj. Поэтому предполагается, что Fj распределены наименее выгодным образом.
1.5.Критерий произведений.
С самого начала этот критерий ориентирован на величины выигрышей, то есть на положительные значения величины е
Определим оценочную функцию:
Zp=max eir.
Привило выбора в этом случае формулируется так:
Матрица решений дополняется новым столбцом, содержащим произведения всех результатов каждой строки. Выбираются те варианты Еiо, в строках которых находятся наибольшие значения этого столбца.
Применение этого критерия обусловлено следующими обстоятельствами:
Вероятности появления состояний Fj неизвестны; с появлением каждого из состояний Fj по отдельности необходимо считаться; критерий применим при малом числе реализаций решения; некоторый риск допускается.
Как уже упоминалось, этот критерий приспособлен в первую очередь для случаев, когда все eij положительны. Если указанное условие нарушается, а этот критерий приходится применять и в этом случае, то следует выполнить некоторый сдвиг eij+a с некоторой константой а > | min eij |. Разумеется, результат применения критерия существенно зависит от этого значения а. На практике в качестве значения, а охотно используют величину | min eij | + 1. Если же никакая константа не может быть признана имеющей смысл, то к таким проблемам этот критерий не применим.
Выбор оптимального решения согласно критерию произведений оказывается значительно минее пессимистическим, чем, например, выбор в соответствии с минимаксным критерием. В результате применения критерия произведений происходит некоторое выравнивание между большими и малыми значениями eij, и, устанавливая оптимальный вариант решения с помощью этого критерия, мы можем при фиксированных состояниях Fj получить большую выгоду, чем при использовании минимаксного критерия, но при этом должна учитываться возможность появления и худших результатов. Следует отметить, что при использовании этого критерия ни число реализаций, ни информация о распределении вероятностей не принимаются во внимание.
1.6.Критерий Гермейера.
Отправляясь от подхода Гермейера к отысканию эффективных и пригодных к компромиссу решений в области полиоптимизации – т.е. всех решений, которые не считаются заведомо худшими, чем другие, - можно предположить еще один критерий, обладающий в некотором отношении определенной эластичностью. Он с самого начала ориентирован на величины потерь, т.е. на отрицательные значения eij.
В качестве оценочной функции выступает
ZG=max eij
Поскольку в хозяйственных задачах преимущественно имеют дело с ценами и затратами, условие eij<0 обычно выполняется. В случае же, когда среди величин eij встречаются и положительные значения, можно перейти к строго отрицательным значениям с помощью преобразования eij - а при подходящим образом подобранном а>0.
Правило выбора согласно критерию Гермейера формулируется следующим образом:
Матрица решений дополняется еще одним столбцом, содержащим в каждой строке наименьшее произведение имеющегося в ней результата на вероятность соответствующего состояния Fj. Выбираются те решения Еiо, в строках которых находится наибольшее значение eir этого столбца.
1.7.Критерий Гурвица.
Стараясь занять наиболее уравновешенную позицию, Гурвиц предложил критерий, оценочная функция которого находится где-то между точками зрения предельного оптимизма и крайнего пессимизма:
ZHW=maxeir.
Правило выбора согласно HW-критерию формулируется так:
Матрица решений дополняется столбцом, содержащим средние взвешенные наибольшего и наименьшего результатов для каждой строки. Выбираются те варианты Eio, в строках которых стоят наибольшие элементы eij этого столбца. В технических приложениях правильно выбрать множитель с бывает так же трудно, как правильно выбрать критерий. Вряд ли возможно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего весовой множитель с=0,5 без возражений принимается в качестве некоторой «средней» точки зрения. При обосновании выбора применяют обратный порядок действий. Для приглянувшегося решения вычисляется весовой множитель с, и он интерпретируется как показатель соотношения оптимизма и пессимизма. Таким образом, позиция исходя из которых принимаются решения, можно рассортировать, по крайней мере, задним числом.