1.3.7 Расчет масштабных коэффициентов
Kmc=20нм/мм
KaΣ=20дж/мм
Kω=0.08с-1/мм
Kε=4с-2/мм
КΔΙ=0.03кгм2/мм
КΙ‘=0.05кгм2/мм
КS=0.005м/мм
КРпс=100н/мм
2. Анализ планетарного механизма
2.1 Синтез планетарного механизма
Задача: Задачей синтеза является проектирование механизма предварительно выбранной структуры по заданным кинематическим и динамическим условиям.
2.1.1 Определение чисел зубьев планетарного механизма
Рисунок 8-Планетарный механизм
Исходные данные: n1=1570об/мин; n5=140об/мин; m=4мм; z4=15; z5=26.
В данной задаче необходимо определить число зубьев 1,2,3 планетарной ступени механизма. Подобрать число сателлитов.
2.1.2 Определяем число зубьев планетарной ступени
(1) (2) (3) (4)
2.1.3 Условие соосности
(5) (6)Подставляем выражение (6) в передаточное отношение первого колеса с водилом при остановленном третьем колесе
Подставляя числовые данные
(7) Принимаем число зубьев второго колеса равным 39
Определяем количество зубьев третьего колеса
2.1.4 Определение количества саттелитов
Определяем количество зубьев третьего колеса:
(8)
2.1.5 Условие сборки
(9) определяем так, чтобы число в числителе делилось нацело и, исходя из максимального числа сателлитов, таким условиям отвечает: n=3
2.1.6 Определеие диаметров зубчатых колес:
, (10) где m-модуль числа зубьев; z-количество зубьев
2.1.7 Определяем угловую и линейную скорости:
(11)
(12)
2.1.8 Выбор масштабных коэффициентов
2.1.9 Определяем погрешность
(13)
(14)
(15)
(16)
2.1.10 Построение плана линейных скоростей
Рисунок 9 - План линейных скоростей
Определили линейную скорость точки А. Пусть скорость точки изображает отрезок
, тогда, соединяя с мгновенным центром вращения сателлита, получают линию распределения скоростей сателлита. С помощью линии определяем скорость в центре сателлита. Такую же скорость имеет конец . Соединяя точку с центром вращения водила, получаем линию распределения скоростей водила. В точке скорость колеса 1 равна скорости сателлита. Соединяя точку с центром вращения колеса 1, получаем линиюраспределения скоростей 1 колеса. Продлевая линию проходящею через центр , определяем скорость в центре зацепления 4 и 5 зубчатого колеса (т.к. состовляют с водилом одно звено). Соединяя с центром вращения 5 зубчатого колеса, получаем линию распределения скоростей 5-го зубчатого колеса.2.1.11 Построение плана угловых скоростей
Для этого задаемся расстоянием lω1=105мм, и переносим с плана линейных скоростей планы скоростей звеньев 1,2,H,5. Отрезки плана угловых скоростей 0-1,0-H,0-2 и 0-5 пропорциональны угловым скоростям соответствующих звеньев.
Рисунок 10 - План угловых скоростей
Определили угловую скорость
первого зубчатого колеса. Пусть угловая скорость первого зубчатого колеса изображает отрезок с учетом масштабного коэффициента . Затем параллельно (из плана линейных скоростей) через точку проводим прямую до пересечения с нормалью из точки , из полученной точки проводим лучи, параллельно линиям распределения скоростей: , , . Отрезки, отсекаемы этими лучами на горизонтальной прямой, оказываются графическими значениями угловых скоростей , , .Вывод: При синтезировании зубчатого зацепления был проведен расчет геометрических размеров т.е. были определены количество зубьев колёс и их диаметры, также была определена погрешность, которая составила 3.87%.: