Теперь, после того, как высказывание i-й критерий важнее j-го критерия с коэффициентом относительной важности получило точный смысл, перейдем к обсуждению вопроса учета количественной информации об относительной важности критериев в процессе принятия решений.
Как правило, при решении задач многокритериального выбора имеющиеся критерии для ЛПР неравноценны, т.е. одни из них более важны, чем другие. Будем считать, что ЛПР ознакомлено с приведенными выше определениями и способно в терминах коэффициентов относительной важности выразить неравноценность имеющихся критериев.
Пусть, например, ЛПР полагает, что для него i-й критерий важнее j-го с коэффициентом относительной важности
. Спрашивается, каким образом учесть эту дополнительную информацию о критериях в процессе принятия решений?Вспомним установленное ранее включение (30), из которого следует, что наилучшие решения находятся среди парето-оптимальных. После того, как ЛПР дополнительно сообщило указанную информацию об относительной важности критериев, можно надеяться, что с помощью этой информации будет построено более узкое множество, ограничивающее
, чем . Иными словами, дополнительная информация позволит удалить из множества Парето какие-то заведомо «негодные» решения и, тем самым, сузить область дальнейшего поиска множества оптимальных решений.Действительно, при достаточно общих предположениях относительно
имеет место следующий результат.Теорема. Пусть i-й критерий важнее j-го с коэффициентом относительной важности ( ). Тогда для вектор-функции вида
, (31)
для всех , кроме ,
выполнено
. (32)Соотношения (32) наглядно иллюстрирует рисунок 2.
Рисунок 2.
В соответствии с приведенной теоремой учет указанной количественной информации об относительной важности критериев производится следующим образом. Сначала менее важный критерий
в наборе критериев заменяется новым - , вычисленным в соответствии с формулой (31). Тем самым, образуется новый векторный критерий . Затем с помощью известных методов и алгоритмов находится множество Парето относительно векторного критерия . Если это множество оказывается достаточно узким (в том смысле, что все решения, входящие в него, практически одинаково предпочтительны для ЛПР), то в качестве наилучшего выбирается любое решение из . В противном случае следует попытаться получить от ЛПР новую дополнительную информацию об относительной важности какой-то другой пары критериев и учесть ее, построив еще более узкое множество, чем и т.д.В результате выполнения указанных действий либо будет построено достаточно узкое множество Парето, внутри которого следует выбрать любое решение в качестве наилучшего, либо после учета всей имеющейся информации об относительной важности критериев очередное множество Парето окажется сравнительно широким и тогда для окончательного выбора наилучшего решения придется применить какой-нибудь подходящий известный метод решения многокритериальных задач.
Тогда нетрудно вычислить
, , . Следовательно, , так как > , > , и в соответствии с (6) получаем .Отсюда следует, что оптимальным может быть лишь третье решение
.Таким образом, в данном примере на основе лишь одной информации об относительной важности критериев удалось однозначно определить оптимальное решение.
Под адаптивностью понимается закономерность, связанная с приспособлением системы к изменяющимся внешним и внутренним параметрам ее существования. Адаптивность тесно связана с понятием «саморегулирование» и «самоорганизация».
Живые организмы, в том числе и человек, технические устройства, социально-экономические процессы отличаются способностью к саморегулированию. Например, птицы и млекопитающие автоматически, независимо от температуры окружающей среды, регулируют внутреннюю температуру своего тела, поддерживая ее на определенном уровне.
Также её сущность можно проиллюстрировать на примере подготовки космонавтов для полета в космос. Перед полетом в космос космонавты в течение длительного времени проходят подготовку в условиях, близких к условиям работы в космосе. Для этого они тренируются в условиях невесомости, перегрузок организма, соответствующих будущим условиям. То есть космонавт как биологическая система должен пройти процесс адаптации в земных условиях для того, чтобы сохранить свою работоспособность с прежней эффективностью в околоземном пространстве.
Знание закономерностей, которыми обладают системы, позволяет исследователям заранее предсказать форму их поведения при каких-либо изменениях в окружающей среде. Это в свою очередь позволяет принимать более эффективные решения для процесса регулирования будущих событий.
Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием в системе активных элементов, делающих систему целенаправленной. Отсюда вытекают особенности экономических систем, как самоорганизующихся систем, по сравнению с функционирование технических систем: