Таким образом, парный линейный коэффициент корреляции:
Поскольку полученный коэффициент корреляции больше 0, связь положительная. Так как
Значение коэффициента корреляции для несгруппированных данных является приближённым, так как происходит усреднение значений признака для каждой выделенной группы. Коэффициент корреляции для несгруппированных данных является точным, но связан с большими вычислительными затратами, поэтому на практике лучше проводить корреляционный анализ для несгруппированных данных, при условии что полученная группировка является однородной.
ВЫВОДЫ
Статистика страхования – систематизированное изучение и обобщение наиболее массовых и типичных страховых операций на основе выработанных статистической наукой методов обработки обобщенных итоговых натуральных и стоимостных показателей, характеризующих страховое дело. Все показатели, подлежащие статистическому изучению, делятся на две группы. Первая отражает процесс формирования страхового фонда, вторая - его использование.
Статистика страховая построена на сборе необходимой информации с помощью статистического и бухгалтерского учета, которые предусматривают регистрацию соответствующих первичных документов в журналах и других учетных формах. Обобщенные в текущей и годовой статистической отчетности итоговые показатели учета анализируются и обрабатываются с помощью статистических методов.
Для этого строятся динамические ряды сравнимых показателей, оценивается влияние важнейших факторов на рост страховых платежей, договоров и застрахованных объектов, выплату страхового возмещения, страховых сумм и финансовые результаты страхования. Существенную роль в этом деле выполняет анализ средних и относительных показателей, средний страховой платеж, средняя страховая сумма, охват страхового поля, средняя нагрузка одного работника, средняя выплата, убыточность страховой суммы.
Страховая статистика помогает выявлять неиспользованные резервы и имеющиеся недостатки в страховой работе, обеспечивать правильное планирование и контроль за ходом выполнения плана, определять важнейшие закономерности, тенденции и перспективы развития страхового дела.
Расчётная часть выполнена в следующей последовательности:
1) Группировка данных;
2) дисперсионный анализ;
3) корреляционный анализ.
Аналитическая группировка была проведена с равными интервалами i=152,6; оптимальное число гр m=5 расчитали по формуле Стержесса.
Из аналитической группировки предприятий по объёму производства выявила положительную связь между показателями: объём производства и среднегодовой стоимостью основных производственных фондов. По данным ряда распределения построена гистограмма распределения и кумулята.
По факторному признаку вычислено:
а) среднее значение
б) размах вариацииR=763 тонны;
в) Среднее линейное отклонение d=203 тонн
г) Дисперсия
д) Среднее квадратическое отклонение
е) коэффициент вариации
Проведён дисперсионный анализ, для которого произведены следующие вычисления:
а) общая дисперсия
б) межгрупповая диспесия
в) внутригрупповая дисперсия
Так как полученный эмпирический коэффициент детерминации.
Проведён корреляционный анализ для этого:
а) построено поле корреляции;
б) вычислен парный линейный коэффициент
Поскольку полученный коэффициент корреляции больше 0, связь положительная. Так как
СПИСОК ЛИТЕРАТУРЫ
1. Бурцева С.А. Статистика финансов: Учебник. – М.: Финансы и статистика, 2004
2. Ефимов М.Р., Петров Е.В., Румянцев В.Н. Общая теория статистики: Учебник для вузов. – М.: Инфра-М, 1996.
3. Гусаров В. М. Статистика: Учеб. пособие. – М.: ЮНИТИ-ДАНА, 2002
4. Кедрин В.С. Основы статистического анализа: Методические указания по выполнению контрольной работы по дисциплине «Статистика»/ В.С. Кедрин. – Братск: ГОУ ВПО «ИГУ» филиал в г. Братске, 2009.
5. Теслюк И.Е. Статистика финансов: Учеб. пособие. Минск: Высш. шк., 1994