Смекни!
smekni.com

Компьютерное моделирование для исследования физических явлений в нефтедобыче (стр. 4 из 5)

Движение электрона в кулоновском поле ядра

Моделирование свойств микроэлементов - составная часть общей стратегии исследований, роль которой становится все более активной. Основные причины определяются успехами развития теоретических представлений о строении веществ и фантастическими достижениями компьютерных технологий.

Если придерживаться законов классической нерелятивистской квантовой физики, то движение электрона в кулоновском поле ядра описывает основное динамическое уравнение нерелятивистской квантовой механики - уравнение Шрёдингера. В разумности модели молекулы, используемой для квантово-химических построений, согласно которой анализу подлежит система ядер и электронов и ее поведение, описываемое уравнениями квантовой теории, сомнений нет. Вся совокупность экспериментальных данных, полученных разными методами, не противоречит этой модели.

Трудности получения значимых результатов на ее основе связаны с тем, что она слишком обща и всеобъемлюща, так что численное решение уравнений представляет крайне сложную задачу. Приходится делать немалое число шагов на пути создания практичных алгоритмов расчетов свойств молекул, межмолекулярных комплексов и твердых тел.

Мною была проделана научно-исследовательская работа, разработан и реализован алгоритм решения уравнения Шрёдингера для задачи движения электрона в кулоновском поле ядра.

Постановка задачи

Гамильтониан (оператор набла) - квантовомеханический оператор, соответствующий функции Гамильтона в классической механике и определяющий эволюцию квантовой системы. В представлении Шрёдингера эта эволюция описывается зависимостью от времени вектора состояния |Ψ > системы, который удовлетворяет уравнению Шрёдингера.

(1)

где Н - гамильтониан. Если классическая функция Гамильтона не зависит явно от времени, то она является интегралом движения и значение её совпадает с энергией системы. Соответственно гамильтониан системы в этом случае является оператором энергии. Оператор Гамильтона в случае движения электрона в поле ядра будет состоять из операторов кинетической энергии электрона и взаимодействия электрона с ядром.

(2)

При решении этого уравнения будем использовались следующие математические операции: переход в сферические координаты; решение дифференциального уравнения второго порядка в частных производных методом разделения переменных; разложение функции в ряд по степеням z; полиномы Лежандра; оператор Лапласа и Гамильтона; многочлены Чебышева-Лагерра; сферические функции (гармоники); условие нормировки решения уравнения Шрёдингера.

где Ω область определения Ψ(x,y,z).

Ψ(x,y,z) волновая функция прямого физического смысла не имеет. Смысл имеет квадрат модуля волновой функции |Ψ|2 как плотность вероятности обнаружения частицы в точке пространства (x,y,z) области определения Ψ(x,y,z).

Вывод алгоритма

В работе был создан алгоритм для вычисления этой плотности. Искалось решение в виде:

и выведены следующие формулы:

Для решения уравнения Θ(θ) необходимо разбираться в следующих понятиях.

Орбиталь – это некоторый объем пространства, где вероятность нахождения электрона составляет не менее 90%.

Квантовые числа - энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.

1. Главное квантовое число n определяет общую энергию электрона и степень его удаления от ядра (номер энергетического уровня); оно принимает любые целочисленные значения, начиная с 1 (n=1,2,3,...).

2. Орбитальное (побочное или азимутальное) квантовое число l определяет форму атомной орбитали. Оно может принимать целочисленные значения от 0 до n-1 (l = 0,1, 2, 3, ...,n-1). Каждому значению l соответствует орбиталь особой формы: l=0 –s-орбитали; l=1 – р-орбитали (3 типа, отличающихся магнитным квантовым числом m); l=2 – d-орбитали (5 типов), l=3 – f-орбитали (7 типов).

3. Магнитное квантовое число m определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Его значения изменяются от lдо +l, включая 0. Например, при l=1 число m принимает 3 значения: +1, 0, -1, поэтому сущ. 3 типа: px,py,pz.

4. Спиновое квантовое число s может принимать лишь два возможных значения ±½. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона, называемого спином. Для обозначения электронов с различными спинами используются символы: ↑ и ↓.

Произведение найденных функций Θ(θ) и Ф(ф) представляет собой угловую часть волновой функции и называется сферической гармоникойYlm(θ,φ)

Решение радиального уравнения было следующим:

Полученные результаты

На основе выведенной формулы была составлена программа для подсчета вероятности нахождения электрона в точке пространства при конкретных квантовых числах. Графики вероятностей обнаружения частицы в данных углах при максимально вероятном при этих углах радиусе выглядят так.

Литературный обзор

Основоположником отечественного математического моделирования является академик А. А. Самарский, сформулировавший методологию, в кратком виде выраженную знаменитой триадой "модель - алгоритм - программа". Эта методология получила свое развитие в виде технологии "вычислительного эксперимента". В нашей стране имеют давние традиции исследования по механике жидкости и газа на основе уравнений Навье Стокса. Начало им положено ещё в первой половине 60-х годов в трудах участников семинара НИИ ВЦ МГУ по численным методам аэромеханики, работавшего под руководством Г.И. Петрова, Л.А. Чудова, Г.Ф. Теленина, Г.С. Рослякова. Эти работы удачно развивались благодаря успешным достижениям советских учёных в вычислительной математике. Среди многих рассматривавшихся в то время классов задач гидро- и аэродинамики, решение которых не могло быть получено в рамках теории пограничного слоя или невязкого газа (отрывные течения, взаимодействие ударной волны и пограничного слоя, структура ударной волны и т.д.), в работах В.И. Полежаева было значительно продвинуто изучение естественно-конвективных процессов. Эффективные численные методы и программы, разработанные для этого класса задач, позволили уже на ЭВМ второго поколения решить многие практически важные задачи: изучение эффективности тепловой изоляции, теплообмен и температурное расслоение при хранении жидкости в сосудах, конвекция в глубокой атмосфере для интерпретации данных зондирования атмосферы Венеры, исследование гидромеханики невесомости и анализ результатов технологических экспериментов в космосе..

На данный момент имеется немало литературы, излагающей теоретические основы математического моделирования и методов поиска решения. А так же литературы по каждому конкретному направлению научных исследований, в которой описываются модели и методы, эффективные в особенностях прикладной области. Одними из самых популярных областей применения математических методов являются: экономико-математическое моделирование (автоматизированные системы управления, прогнозирование изменений на рынке); математическое моделирование биологических процессов (биофизика, медицина); моделирование промышленных систем; модели нефтедобычи (пластовые структуры, залежи месторождений).

Не смотря на обширный объем литературы по данной тематике, многие области до сих пор остаются малоизученными математиками, хотя и остро нуждаются в применении математического аппарата (например, медицина). Помимо того, типология процесса не может учесть весь класс задач прикладной области, а в каждом частном случае существенное влияние могут оказывать любые особенности решаемой задачи.