Смекни!
smekni.com

Методы принятия управленческих решений (стр. 4 из 6)

Pi = Fi / ( 1+ r ) i

где r- коэффициент дисконтирования.

Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений (доходов) и приведении их к текущему моменту времени. Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будущих доходов , ожидаемых к поступлению в течение ряда лет. В этом случае коэффициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал .

Итак, последовательность действий аналитика такова (расчеты выполняются для каждого альтернативного варианта):

* рассчитывается величина требуемых инвестиций (экспертная оценка) , IC;

* оценивается прибыль (денежные поступления) по годам Fi;

* устанавливается значение коэффициента дисконтирования , r;

* определяются элементы приведенного потока , Pi;

* рассчитывается чистый приведенный эффект (NPV) по формуле:

NPV= E Pi - IC

· сравниваются значения NPV ;

· предпочтение отдается тому варианту, который имеет больший NPV (отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта).

Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции. Последовательность действий аналитика в этом случае такова :

* рассчитывается величина требуемых инвестиций , IC ;

* оценивается прибыль ( денежные поступления ) по годам , Fi ;

* выбирается тот вариант, кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции.

б) Число альтернативных вариантов больше двух .

n > 2

Процедурная сторона анализа существенно усложняется из-за множественности вариантов, техника “ прямого счета “ в этом случае практически не применима. Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ”. Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу, как пример выбора оптимального варианта из набора альтернативных. Суть задачи состоит в следующем .

Имеется n пунктов производства некоторой продукции (а1,а2,...,аn) и k пунктов ее потребления (b1,b2,....,bk), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления. Рассматривается наиболее простая, так называемая “закрытая задача ”, когда суммарные объемы производства и потребления равны. Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета[16] ” . Итак необходимо решить следующую задачу :

E E Cg Xg -> min

E Xg = bj E Xg = bj Xg >= 0

Известны различные способы решения этой задачи -распределительный метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.

При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации, предполагающие множественные расчеты на ЭВМ[17]. В этом случае строится имитационная модель объекта или процесса (компьютерная программа), содержащая b-е число факторов и переменных, значения которых в разных комбинациях подвергается варьированию. Таким образом, машинная имитация - это эксперимент, но не в реальных, а в искусственных условиях. По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев .

2 . Анализ и принятие управленческих решений в условиях риска.

Эта ситуация встречается на практике наиболее часто. Здесь пользуются вероятностным подходом , предполагающим прогнозирование возможных исходов и присвоение им вероятностей[18] . При этом пользуются:

а) известными, типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ;

б) предыдущими распределениями вероятностей ( например, из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;

в) субъективными оценками, сделанными аналитиком самостоятельно либо с привлечением группы экспертов.

Последовательность действий аналитика в этом случае такова:

· прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n;

· каждому исходу присваивается соответствующая вероятность pk , причем

· Е рк = 1

· выбирается критерий (например максимизация математического ожидания прибыли ) ;

· выбирается вариант, удовлетворяющий выбранному критерию.

Пример: имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений. Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :

Проект А Проект В
Прибыль Вероятность Прибыль Вероятность
3000 0. 10 2000 0 . 10
3500 0 . 20 3000 0 . 20
4000 0 . 40 4000 0 . 35
4500 0 . 20 5000 0 . 25
5000 0 . 10 8000 0 . 10

Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно:

У (Да) = 0 . 10 * 3000 + ......+ 0 . 10 * 5000 = 4000

У ( Дб ) = 0 . 10 * 2000 +.......+ 0 . 10 * 8000 = 4250

Таким образом, проект Б более предпочтителен. Следует , правда , отметить , что этот проект является и относительно более рискованным , поскольку имеет большую вариацию по сравнению с проектом А ( размах вариации проекта А - 2000 , проекта Б - 6000 ) .

В более сложных ситуациях в анализе используют так называемый метод построения дерева решений[19]. Логику этого метода рассмотрим на примере.

Пример: управляющему нужно принять решение о целесообразности приобретения станка М1 либо станка М2 . Станок М2 более экономичен, что обеспечивает больший доход на единицу продукции, вместе с тем он более дорогой и требует относительно больших накладных расходов:

Постоянные расходы Операционный доход на единицу продукции
Станок М1 15000 20
Станок М2 21000 24

Процесс принятия решения может быть выполнен в несколько этапов:

Этап 1 . Определение цели.

В качестве критерия выбирается максимизация математического ожидания прибыли.

Этап 2 . Определение набора возможных действий для рассмотрения и анализа (контролируются лицом, принимающим решение)[20]

Управляющий может выбрать один из двух вариантов:

а1 = {покупка станка М1}

а2 = {покупка станка М2}

Этап 3 . Оценка возможных исходов и их вероятностей (носят случайный характер).

Управляющий оценивает возможные варианты годового спроса на продукцию и соответствующие им вероятности следующим образом:

х1 = 1200 единиц с вероятностью 0 . 4

х2 = 2000 единиц с вероятностью 0 . 6

Этап 4 . Оценка математического ожидания возможного дохода:

Е (Да) = 9000 * 0 . 4 + 25000 * 0 . 6 = 18600

Е ( Дб ) = 7800 * 0 . 4 + 27000 * 0 . 6 = 19320

Таким образом, вариант с приобретением станка М2 экономически более целесообразен .

3 . Анализ и принятие управленческих решений в условиях неопределенности.

Эта ситуация разработана в теории, однако на практике формализованные алгоритмы анализа применяются достаточно редко[21]. Основная трудность здесь состоит в том, что невозможно оценить вероятности исходов. Основной критерий - максимизация прибыли - здесь не срабатывает , поэтому применяют другие критерии :

* максимин (максимизация минимальной прибыли)

* минимакс (минимизация максимальных потерь)

* максимакс (максимизация максимальной прибыли) и др.

4 . Анализ и принятие управленческих решений в условиях конфликта.

Наиболее сложный и мало разработанный с практической точки зрения анализ. Подобные ситуации рассматриваются в теории игр . Безусловно на практике эта и предыдущая ситуации встречаются достаточно часто . В таких случаях их пытаются свести к одной из первых двух ситуаций либо используют для принятия решения неформализованные методы .

Оценки, полученные в результате применения формализованных методов, являются лишь базой для принятия окончательного решения; при этом могут приниматься во внимание дополнительные критерии, в том числе и неформального характера .


3. Принятие управленческих решений в АО «Вятский торговый дом».

3.1. Организационно-распорядительные методы.

Рассмотрим сначала организационно-распорядительные методы (ОРМ).

ОРМ делятся на 2 вида: организационно-стабилизирующие и методы распорядительного воздействия.

Первые в свою очередь делятся еще на 3 вида:

1. Методы организационного регламентирования. К ним относятся различные документы, регламентирующие работу какой-либо фирмы, в нашем случае - АО "Вятский торговый дом", т. е. устанавливают основные регламенты функционирования системы: соотношение между управляемой и управляющей подсистемами, определяют порядок функционирования самой системы и ее элементов, их подчиненность, закрепляет определенные функции. Например, устав АО. Положения об отделах закрепляют за ними определенные функции, а также обеспечивают соподчиненность одних служб другим. К этой же группе я бы отнес должностные инструкции, которые также закрепляют соподчиненность, связи и обязанности руководителей и рядовых исполнителей.