Такое упорядочение образует нестрогий линейный порядок.
Для отношения нестрогого линейного порядка доказано существование числовой системы с отношениями неравенства и равенства между числами, описывающими свойства объектов. Любые две числовые системы для нестрогого линейного порядка связаны между собой монотонным преобразованием. Следовательно, ранжирование при условии наличия эквивалентных объектов представляет собой измерение также в порядковой шкале.
В практике ранжирования объектов, между которыми допускаются отношения как строгого порядка, так и эквивалентности, числовое представление выбирается следующим образом. Наиболее предпочтительному объекту присваивается ранг, равный единице, второму по предпочтительности - ранг, равный двум, и т.д. Для эквивалентных объектов удобно с точки зрения технологии последующей обработки экспертных оценок назначать одинаковые ранги, равные среднеарифметическому значению рангов, присваиваемых одинаковым объектам. Такие ранги называют связанными рангами. Для приведенного примера упорядочения на основе нестрогого линейного порядка при N - 10 ранги объектов а3. а4, а5 будут равными
В этом же примере ранги объектов а9, а]0 также одинаковы и равны среднеарифметическому
Связанные ранги могут оказаться дробными числами. Удобство использования связанных рангов заключается в том, что сумма рангов N объектов равна сумме натуральных чисел от единицы до N. При этом любые комбинации связанных рангов не изменяют эту сумму. Данное обстоятельство существенно упрощает обработку результатов ранжирования при групповой экспертной оценке.При групповом ранжировании каждый S-й эксперт присваивает каждому объекту ранг riS. В результате проведения экспертизы получается матрица рангов
размерности Nk, где к - число экспертов; N - число объектов; Результаты группового экспертного ранжирования удобно представить в виде таблицы 1.Аналогичный вид имеет таблица, если осуществляется ранжирование объектов одним экспертом по нескольким показателям сравнения. При этом в таблице вместо экспертов в соответствующих графах указываются показатели. Напомним, что ранги объектов определяют только порядок расположения объектов по показателям сравнения. Ранги как числа не дают возможности сделать вывод о том, на сколько или во сколько раз предпочтительнее один объект по сравнению с другим.
Таблица 1.Результаты группового ранжирования
Объект | Э1 | Э2 | … | Эк |
a1 | r11 | r12 | ... | r1k |
а2 | r21 | r22 | … | |
... | ... | … | ... | … |
an | r n1 | r n2 | … | r nk |
Достоинство ранжирования как метода экспертного измерения - простота осуществления процедур, не требующая трудоемкого обучения экспертов. Недостатком ранжирования является практическая невозможность упорядочения большого числа объектов. Как показывает опыт, при числе объектов, большем 10-15, эксперты затрудняются в построении ранжировки. Это объясняется тем, что в процессе ранжирования эксперт должен установить взаимосвязь между всеми объектами, рассматривая их как единую совокупность. При увеличении числа объектов количество связей между ними растет пропорционально квадрату числа объектов. Сохранение в памяти и анализ большой совокупности взаимосвязей между объектами ограничиваются психологическими возможностями человека. Психология утверждает, что оперативная память человека позволяет оперировать в среднем не более чем
объектами одновременно. Поэтому при ранжировании большого числа объектов эксперты могут допускать существенные ошибки.Парное сравнение. Этот метод представляет собой процедуру установления предпочтения объектов при сравнении всех возможных пар. В отличие от ранжирования, в котором осуществляется упорядочение всех объектов, парное сравнение объектов является более простой задачей. При сравнении пары объектов возможно либо отношение строгого порядка, либо отношение эквивалентности. Отсюда следует, что парное сравнение так же, как и ранжирование, есть измерение в порядковой шкале.
В результате сравнения пары объектов а(, а;. эксперт упорядочивает ее, высказывая либо
либо либо Выбор числового представления можно произвести так: еслиесли предпочтение в паре обратное, то знак
неравенства заменяется на обратный, т.е. Если объекты эквивалентны, то можно считать, чтоВ практике парного сравнения используются следующие числовые представления:
(1)(2)
Результаты сравнения всех пар объектов удобно представлять в виде матрицы. Пусть, например, имеются пять объектов «,, а2, аг, а4, а5 и проведено парное сравнение этих объектов по предпочтительности. Результаты сравнения представлены в виде
Используя числовое представление (1), составим матрицу измерения результатов парных сравнений, таблица 2.
Таблица 2.Матрица парных сравнений
а 1 | а2 | а 3 | а4 | а 5 | |
а 1 | 1 | 1 | 1 | 1 | 0 |
а2 | 0 | 1 | 1 | 1 | 0 |
аз | 0 | 0 | ] | 1 | 0 |
а4 | 0 | 0 | 1 | 1 | 0 |
а 5 | 1 | 1 | 1 | 1 | 1 |
Таблица 3.Результаты измерения пяти объектов
а 1 | а2 | а 3 | а4 | а 5 | |
а 1 | 1 | 2 | 2 | 2 | 0 |
а2 | 0 | 1 | 2 | 2 | 0 |
аз | 0 | 0 | 1 | 1 | 0 |
а4 | 0 | 0 | 1 | 1 | 0 |
а 5 | 2 | 2 | 2 | 2 | 1 |
В таблице 2 на диагонали всегда будут расположены единицы, поскольку объект эквивалентен себе. Представление (2) характерно для отображения результатов спортивных состязаний. За выигрыш даются два очка, за ничью одно и за проигрыш ноль очков (футбол, хоккей и т.п.). Предпочтительность одного объекта перед другим трактуется в данном случае как выигрыш одного участника турнира у другого. Таблица результатов измерения при использовании числового представления не отличается от таблиц результатов спортивных турниров за исключением диагональных элементов (обычно в турнирных таблицах диагональные элементы заштрихованы). В качестве примера в таблице 3 приведены результаты измерения пяти объектов с использованием представления (2), соответствующие таблице 1.
Вместо представления (2) часто используют эквивалентное ему представление которое получается из (2) заменой 2 на +1, 1 на 0 и 0 на 1.
(3)Если сравнение пар объектов производится отдельно по различным показателям или сравнение осуществляет группа экспертов, то по каждому показателю или эксперту составляется своя таблица результатов парных сравнений. Сравнение во всех возможных парах не дает полного упорядочения объектов, поэтому возникает задача ранжирования объектов по результатам их парного сравнения.
Однако, как показывает опыт, эксперт далеко не всегда последователен в своих предпочтениях. В результате использования метода парных сравнений эксперт может указать, что объект а, предпочтительнее объекта а-,, а2 предпочтительнее объекта а3ив то же время а3 предпочтительнее объекта av. В случае разбиения объекта на классы эксперт может к одному классу отнести пары а, и а2, а2, и а3, но в то же время объекты а, и а3 отнести к различным классам. Такая непоследовательность эксперта может объясняться различными причинами: сложностью задачи, неочевидностью предпочтительности объектов или разбиения их на классы (в противном случае, когда все очевидно, проведение экспертизы необязательно), недостаточной компетентностью эксперта, недостаточно четкой постановкой задачи, многокритериальностью рассматриваемых объектов и т.д.
Непоследовательность эксперта приводит к тому, что в результате парных сравнений при определении сравнительной предпочтительности объектов мы не получаем ранжирования и даже отношений частичного порядка не выполнено свойство транзитивности.
Если целью экспертизы при определении сравнительной предпочтительности объектов является получение ранжирования или частичного упорядочения, необходима их дополнительная идентификация. В этих случаях имеет смысл в качестве результирующего отношения выбирать отношение заданного типа, ближайшее к полученному в эксперименте.
Множественные сравнения. Они отличаются от парных тем, что экспертам последовательно предъявляются не пары, а тройки, четверки,..., n-ки (n<N) объектов. Эксперт их упорядочивает по важности или разбивает на классы в зависимости от целей экспертизы. Множественные сравнения занимают промежуточное положение между парными сравнениями и ранжированием. С одной стороны, они позволяют использовать больший, чем при парных сравнениях, объем информации для определения экспертного суждения в результате одновременного соотнесения объекта не с одним, а с большим числом объектов. С другой стороны, при ранжировании объектов их может оказаться слишком мно-го, что затрудняет работу эксперта и сказывается на качестве результатов экспертизы. В этом случае множественные сравнения позволяют уменьшить до разумных пределов объем поступающей к эксперту информации.