Задача может быть порождена также обобщением потребностей ряда прикладных областей. Приведенный выше пример иллюстрирует эту ситуацию: к необходимости проверки гипотезы однородности приходят и медики при сравнении двух групп пациентов, и инженеры при сопоставлении результатов обработки деталей двумя способами, и т.д. Таким образом, одна и та же математическая модель может применяться для решения самых разных по своей прикладной сущности задач.
Важно подчеркнуть, что выделение перечня задач находится вне математики. Выражаясь инженерным языком, этот перечень является сутью технического задания, которое специалисты различных областей деятельности дают статистикам.
Метод, используемый в рамках определенной математической модели - это уже во многом, если не в основном, дело математиков. В эконометрических моделях речь идет, например, о методе оценивания, о методе проверки гипотезы, о методе доказательства той или иной теоремы, и т.д. В первых двух случаях алгоритмы разрабатываются и исследуются математиками, но используются прикладниками, в то время как метод доказательства касается лишь самих математиков.
Ясно, что для решения той или иной задачи в рамках одной и той же принятой исследователем модели может быть предложено много методов. Приведем примеры. Для специалистов по теории вероятностей и математической статистике наиболее хорошо известна история Центральной Предельной Теоремы теории вероятностей. Предельный нормальный закон был получен многими разными методами, из которых напомним теорему Муавра-Лапласа, метод моментов Чебышева, метод характеристических функций Ляпунова, завершающие эпопею методы, примененные Линдебергом и Феллером. В настоящее время для решения практически важных задач могут быть использованы современные информационные технологии на основе метода статистических испытаний и соответствующих датчиков псевдослучайных чисел. Они уже заметно потеснили асимптотические методы математической статистики. В рассмотренной выше проблеме однородности для проверки одной и той же гипотезы совпадения функций распределения могут быть применены самые разные методы – Смирнова, Лемана - Розенблатта, Вилкоксона и др.
Наконец, рассмотрим последний элемент четверки - условия применимости. Он - полностью внутриматематический. С точки зрения математика замена условия (кусочной) дифференцируемости некоторой функции на условие ее непрерывности может представляться существенным научным достижением, в то время как прикладник оценить это достижение не сможет. Для него, как и во времена Ньютона и Лейбница, непрерывные функции мало отличаются от (кусочно) дифференцируемых. Точнее, они одинаково хорошо (или одинаково плохо) могут быть использованы для описания реальной действительности.
В заключении можно сказать, что функционирование любого бизнеса невозможно без принятия решений. К настоящему времени инструментарий для процесса принятия решений богат математическими и статистическими методами. К тому же, развитие компьютерных программ облегчает этот процесс для менеджеров, не обладающих глубокими знаниями высшей математики. Однако, позволяет широко использовать достижения прогресса.
Список литературы
1. Орлов А.И.Теория принятия решений .Учебное пособие. - М.: Издательство "Март", 2004.
2. Орлов А.И. Эконометрика. – М.: Экзамен,2002. – 576 с.
3. Любушин Н.П., Лещева В.Б., Дьякова В.Г. Анализ финансово-экономической деятельности предприятия: Учебное пособие для вузов / под ред.проф. Н.П.Любушина.-М.:ЮНИТИ-ДАНА,2001.- 472с.
4. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б. Современный экономический словарь. – 2-е издание, исправленное. – М.: ИНФРА-М,1999 . – 479 с.