КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Управление и маркетинг в АПК»
Методы решения управленческих задач в АПК: регрессионный анализ
Содержание
ВВЕДЕНИЕ
1 Основные методы управления
2 Методы регрессионного анализа
3 Парная линейная регрессия
4 Множественная линейная регрессия
5 Нелинейная регрессия. Коэффициент эластичности
Заключение
Список литературы
Методы управления — это система способов воздействия субъекта управления на объект для достижения определенного результата. Теоретическая основа методов управления требует глубокой и тщательной проработки, поскольку наиболее активный и действенный инструмент управления способен при неправильном его использовании привести к отрицательным последствиям. Это тем более усугубляется при деформациях или неверном формировании механизма управления.
Существует несколько подходов к классификации методов управления. Однако к человеку и коллективу имеет смысл применять только такие средства воздействия, которые затрагивают их интересы. Поэтому заслуживает внимания классификация по содержанию воздействия: экономическое, организационное, социально-психологическое. Основой данной классификации являются побудительные мотивы отдельных работников к труду, их потребности и интересы. Именно они определяют поведение людей.
Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.
Решение названных задач опирается на соответствующие, приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.
Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов, изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.
Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы — параметрические — и принято называть корреляционными.
Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.
Существует несколько подходов к классификации методов управления. Однако к человеку и коллективу имеет смысл применять только такие средства воздействия, которые затрагивают их интересы. Поэтому заслуживает внимания классификация по содержанию воздействия: экономическое, организационное, социально-психологическое. Основой данной классификации являются побудительные мотивы отдельных работников к труду, их потребности и интересы. Именно они определяют поведение людей.
1. Регрессионный анализ;
2. На методе Лагранжа;
3. На методе Гаусса;
4. На линейном программировании;
5. Ценно-системное программирование;
6. На методе ветвей и границ
7. Основывается с Булевыми переменными;
8. На дискретном программировании;
9. На теории графов;
10. На стохастические (вероятностные)
11. На теории игр (моделирование в лаборатории)
Экономические методы основаны на социально-экономических законах и закономерностях развития объективного мира — природы, общества и мышления. Использование этих методов опирается на систему экономических интересов личности, коллектива и общества.
Организационно-распорядительные методы базируются на правах и ответственности людей на всех уровнях хозяйствования и управления. Эти методы предполагают использование руководителем власти, ответственности подчиненных и создание системы организационных отношений.
Социально-психологические методы построены на формировании и развитии общественного мнения относительно общественно и индивидуально значимых нравственных ценностей — добра и зла, сути жизни, нравственных начал в обществе, отношений к личности и т. д.
После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х1, х2,…, хк отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.
Функция f(х1, х2,…, хк) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. –regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.
Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.
Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией ỹ и оценкой ŷ регрессии. Пусть результативный показатель у связан с аргументом х соотношением:
у=2х1,5+ε,
где – ε случайная величина, имеющая нормальный закон распределения, причем Мε = 0 и D ε = σ2. Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х1.5.
Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+ε, и представленной на рис. 1
Рисунок 1 – Взаимное расположение истиной f (х) и теоретической ỹ модели регрессии
Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида ỹ = β0+β1x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b0+b1x.Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х1,5, теоретической аппроксимирующей функции регрессии ỹ = β0+β1x.
Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью ỹ объяснялась бы только ограниченностью выборки.
С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).
Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений ,ỹ = f(хi), где , хi - значение вектора аргументов в i-м наблюдении: ∑(yi- f(хi)2 → min. Получаемая регрессия называется среднеквадратической.
Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем ,ỹ = f(хi), среднеабсолютную медианную регрессию ∑ |yi- f(хi)| →min.
Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных хj = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.
Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у , являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией σ2.