Смекни!
smekni.com

Методы решения управленческих задач в АПК: регрессионный анализ (стр. 3 из 3)

Уi = а0 + а1 Х i+ Хi1 + ..a2Xi2. +… аk Хik+ εi

или — в форме уравнения регрессии –

Утеор = а0 + а1 Х 1+..a2Xi2. +… аk Хk, где

Утеор – расчетное значение регрессии, которое представляет собой оценку ожидаемого значения У при фиксированных значениях переменных Х1, Х2, …..Хк;

а1, а2, …,ак, - коэффициенты регрессии, каждый из которых показывает . на сколько единиц изменится У с изменением соответствующего признака Х на единицу при условии, что остальные признаки останутся на прежнем уровне.

Оценка параметров множественной регрессии вручную затруднительна, приводит к потерям точности и может лишь удовлетворить любопытство. Получение же оценок параметров на ЭВМ в настоящее время не представляет большой проблемы. Гораздо важнее, насколько линейная форма связи соответствует реально существующей зависимости между У, с одной стороны и множеством – с другой.

5 Нелинейная регрессия. Коэффициент эластичности

Представление связи через линейную функцию там, где на самом деле существуют не линейные отношения, вызовет ошибки аппроксимации и в конечном итоге упрощенные и даже ложные положения и выводы на основе аналитического уравнения.

Вопрос о нелинейности формы уравнения следует решать на стадии теоретического анализа. Как правило, анализ должен опираться на суть взаимодействия изучаемых явлений процессов и формально подкрепляться различного рода статистическими критериями. Но на практике допускается другое решение – нелинейность формулируется как гипотеза и очерчивается лишь круг возможных уравнений, а затем форма и вид уравнения уточняются на ЭВМ. Существуют разные формы нелинейных уравнений регрессии, но в общем виде можно выделить два их класса.

К первому отнесем регрессии нелинейные относительно включенных в исследование переменных, но линейные по параметрам. Это, например, полиномы. В случае парной регрессии имеем уравнение

У = а0 + а1 Х 1+..a2Xi2. +…

Возможно применение гиперболы, других функций. При желании с помощью стандартных программ для ЭВМ может быть образованно любое нелинейное сочетание переменных, линейных относительно коэффициентов уравнения. Последние оцениваются с помощью метода наименьших квадратов.

Второй класс нелинейных функций отличается нелинейностью по оцениваемым параметрам. Таких уравнений также существует множество. Наиболее распространена степенная функция вида

У= а0 * Ха1(парная регрессия)

Либо У= а0 * Ха1а2….(множественная регрессия)

Даже по приведенным примерам можно составить представление о широком спектре возможных аналитических представлений нелинейной формы связи.

Интерпретация коэффициента регрессии как углового коэффициента в линейном уравнении для нелинейной зависимости не годиться. Определить изменение У при изменении Х на единицу можно с помощью производной, взятой по соответствующему фактору Х.

Чаще всего для характеристики влияния изменения Х на У испольхуют так называемый коэффициент эластичности (Э),который показывает , на скольк5о процентов изменится У при изменении Х на один процент , т.е.

Э = dY/dX * X/Y = f (X) X/Y.

Коэффициент эластичности – это, собственно, относительные величины. Их использование расширяет возможности сопоставления, экономической интерпретации результатов в дополнение к абсолютным величинам – коэффициентам регрессии.

Заключение

Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этот полнота описания, так или иначе, определяется количественными характеристиками причинно – следственных связей между ними.

Эффективное управление, правильное решение экономических и социальных проблем базируются на глубоком анализе фактического состояния дел. Основные его задачи: определение степени выполнения программ, заданий, в случае невыполнения выяснение причин этого; изучение передового опыта и возможностей его использования; определение путей повышения эффективности производства; улучшение социальных условий для членов коллектива и т. д.

Решение управленческих задач в агропромышленном комплексе приемами регрессионного анализа опирается на соответствующие, приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических г1 пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время. вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов, изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Список литературы

1 Королев Ю.Б. Менеджмент в АПК. – М:. КолоС, 2003. – 304 с.

2 Митряхин В.С. Статистика. – М.: «Академия», 2002. – 264 с.

3 Харченко Л. П. Статистика: курс лекций. – М.: ИНФРА-М, 2000. – 168 с.

4 Управление маркетингом. / Под ред. А.В. Короткова, И.М. Синяевой. –М.: ЮНИТИ-ДАНА, 2005. – 463 с.