Средняя квадратическая погрешность (среднее квадратическое отклонение (Sd) — характеристика рассеяния результатов измерений одной и той же величины вследствие влияния случайных погрешностей. Применяется для оценки точности первичных и вторичных эталонов. Например, в поверочной схеме (см. табл. 2) для гири как вторичного эталона (эталона-копии) дано значение погрешности через такую разновидность показателя, как суммарная погрешность результата измерений (SdS).
Она представляет среднюю квадратическую погрешность результата измерений, состоящую из случайных и не исключенных систематических погрешностей.
Наконец, показатели точности могут устанавливаться в связи с группировкой погрешностей СИ по условиям измерения.
Основная погрешность СИ — погрешность, определяемая в нормальных условиях применения СИ.
Дополнительная погрешность СИ — составляющая погрешности СИ, дополнительно возникающая вследствие отклонения какой-либо из влияющих величин (температуры, относительной влажности, напряжения сети переменного тока и пр.) от ее нормального значения.
Обычно метрологические характеристики нормируют раздельно для нормальных и рабочих условий применения СИ. Нормальными считаются условия, при которых изменением характеристик под воздействием внешних факторов (температура, влажность и пр.) принято пренебрегать. Так, для многих типов СИ нормальными условиями применения являются температура (293 ± 5) К, атмосферное давление(100 ± 4) кПа, относительная влажность (65 ± 15)%, электрическое напряжение в сети питания 220 В ± 10%. Рабочие условия отличаются от нормальных более широкими диапазонами изменения влияющих величин. И те и другие метрологические характеристики указываются в НД.
Оценка погрешности измерений СИ, используемых для определения показателей качества товаров, определяется спецификой применения последних. Например, погрешность измерения цветового тона керамических плиток для внутренней отделки жилища должна быть по крайней мере на порядок ниже, чем погрешность измерения аналогичного показателя серийно выпускаемых картин, сделанных цветной фотопечатью. Дело в том, что разнотонность двух наклеенных рядом на стену кафельных плиток будет бросаться в глаза, тогда как разнотонность отдельных экземпляров одной картины заметно не проявится, так как они используются разрозненно.
Выше были подробно рассмотрены характеристики точности результатов измерений. Рассмотрим два других свойства, определяющих качество измерений, — сходимость и воспроизводимость результатов измерений.
Сходимость результатов измерений — характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью.
Количественная оценка сходимости может быть дана с помощью разных показателей. Так, в стандартах на методы определения химического состава мяса сходимость указывается в различной форме: при определении нитрита за результат анализа принимают среднее арифметическое из двух параллельных определений при расхождении по отношению к среднему не более 10% при Р= 0,95; при определении азота разница между результатами двух определений, выполненных одновременно или с небольшими промежутками времени одним и тем же химиком-аналитиком, , не должна превышать 0,10 г азота на 10 г образца. ;
Высокая сходимость результатов измерения очень важна при оценке показателей качества товаров,' приобретаемых потребителем в виде партии (см. выше пример с керамической плиткой).
Воспроизводимость результатов измерений — повторяемость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).
Например, в стандарте на методы определения плотности молока воспроизводимость регламентируется в следующей форме: допускаемое расхождение между результатами определения плотности молока одним типом ареометра в различных условиях (в разное время, в разных местах и разными операторами) не должно превышать 0,8 кг/м3.
В процедурах сличения результатов анализа качества однотипной продукции в разных лабораториях рекомендуется [9] оценивать воспроизводимость по методике, изложенной в следующем примере.
Пусть в двух лабораториях (например, контролирующей и контролируемой) при измерениях на одном и том же образце продукции некоторого показателя получены значения C1 и С2 и при этом известны граничные значения абсолютной погрешности результатов измерений Dгр1 и Dгр 2 , относящиеся к одной и той же вероятности Р = 0,95. В этом случае модуль разности С1 — С2 не должен с вероятностью Р = 0,9 превышать суммы модулей гр1 и гр2, т.е. должно выполняться соотношение: С1 — C2 < |rp1| + |rp2|.
Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводятся в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой — классом точности.
Класс точности СИ — обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Например, для вольтметров нормируют предел допускаемой основной погрешности и соответствующие нормальные условия; пределы допускаемых дополнительных погрешностей; пределы допускаемой вариации показаний; невозвращение указателя к нулевой отметке. У плоскопараллельных концевых мер длины такими характеристиками являются пределы допускаемых отклонений от номинальной длины и плоскопараллельности;
пределы допускаемого изменения длины в течение года. У мер электродвижущей силы (нормальных элементов) нормируют пределы допускаемой нестабильности ЭДС в течение года.
Обозначение классов точности осуществляется следующим образом.
Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.
Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах. Так, класс точности 0,001 нормальных элементов свидетельствует о том, что их нестабильность за год не превышает 0,001%. Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в НД. СИ с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или каждой измеряемой величины. Так, электроизмерительному прибору, предназначенному для измерений напряжения и сопротивления, могут быть присвоены два класса точности: один как вольтметру, другой как омметру.
Присваиваются классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс . точности по результатам поверки (калибровки).
Итак, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.
Точность и методика производимых измерений требует специального рассмотрения.
Основной постулат метрологии. Выше, при рассмотрении количественной характеристики измеряемых величин, было упомянуто уравнение измерения, в котором отражена процедура сравнения неизвестного размера Q с известным [Q]: Q/[Q] = X. В качестве единицы измерения [Q] при измерении физических величин выступает соответствующая единица Международной системы. Информация о ней заложена либо в градуированной характеристике СИ, либо в разметке шкалы отсчетного устройства, либо в значении вещественной меры. Указанное уравнение является математической моделью измерения по шкале отношений.
Теоретически отношение двух размеров должно быть вполне определенным, неслучайным числом. Но практически размеры сравниваются в условиях множества случайных и неслучайных обстоятельств, точный учет которых невозможен. Поэтому при многократном измерении одной и той же величины постоянного размера результат, называемый отсчетом по шкале отношений, получается все время разным. Это положение, установленное практикой, формулируется в виде аксиомы, являющейся основным постулатом метрологии: отсчет является случайным числом.
Факторы, влияющие на результат измерения (влияющие факторы). При подготовке и проведении высокоточных измерений в метрологической практике учитывают влияние объекта измерения, субъекта (эксперта или экспериментатора), метода измерения, средства измерения, условий измерения.