1) для y и переменных, соответствующих варианту (см. таб. 4), построить матрицу частных коэффициентов корреляции (корреляционную матрицу). Изобразить матрицу в графическом виде.
Таблица 4 – Варианты заданий
Вариант j | Независимые переменные (факторные признаки) | Задания по прогнозированию |
Как изменится производительность труда на московском предприятии, если | ||
0 | х1, х2, х4, x5 | среднегодовую численность рабочих сократить на 780 человек, а коэффициент сменности оборудования повысить до 3? |
1 | х1, х3, х4, x5 | среднегодовую стоимость основных фондов увеличить на 80 тыс. руб., а и трудоемкость единицы продукции на 0,6? |
2 | х3, х4, x5, x6 | трудоемкость единицы продукции сократить в 4 раза, а коэффициент сменности оборудования снизить в 2 раза? |
3 | х1, х2, х3, x5 | среднегодовую стоимость основных фондов увеличить на 60 тыс. руб., а коэффициент сменности оборудования – на 0,9? |
4 | х1, х2, x6, x7 | среднегодовую стоимость основных фондов сократить до 90 тыс. руб., а удельный вес потерь от брака понизить в 2 раза? |
5 | х1, х3, х4, x7 | среднегодовую стоимость основных фондов сократить до 95 тыс. руб., а трудоемкость единицы продукции понизить на 0,1? |
6 | х1, х2, x5, x7 | коэффициент сменности оборудования увеличить в 2 раза, а среднегодовой фонд заработной платы уменьшить на 92 тыс. руб.? |
7 | х4, x5, x6, x7 | коэффициент сменности оборудования уменьшить в 2 раза, а среднегодовой фонд заработной платы увеличить на 92 тыс. руб. |
8 | х2, х3, x5, x7 | коэффициент сменности оборудования увеличить на 1,5, а среднегодовой фонд заработной платы уменьшить на 32 тыс. руб.? |
9 | х1, х3, x5, x7 | коэффициент сменности оборудования уменьшить на 1,5, а среднегодовой фонд заработной платы увеличить на 32 тыс. руб.? |
2) построить линейное уравнение множественной регрессии, выбрав в качестве зависимой переменной – y, в качестве независимых – переменные хi, соответствующие варианту (см. таб. 4).
3) Определить коэффициент множественной корреляции и коэффициент детерминации R2полученной модели
4) Проверить значимость построенной модели (например, используя уровень значимости α=0,05).
5) Если модель значима дать оценку коэффициентов множественной регрессии на основе t-критерия, если tтабл(15-4-1)= tтабл(10)=2,2281 и уровня значимости α=0,05.
6) Пересчитать уравнение множественной регрессии используя только значимые факторы.
7) Проверить адекватность регрессионной модели (полученной на предыдущем этапе анализа).
8) Осуществить прогнозирование в соответствии с вариантом
9) Оформить отчет о проделанной работе используя распечатки отчета, полученного средствами пакета STATISTICA или в MS Word.
Порядок выполнения задания
В системе STATISTICA для построения корреляционной матрицы можно воспользоваться модулем Basic Statistics/Tables (Основные статистики и таблицы), выбрав процедуры
® , используя в качестве переменных все исходные данные (Select all). И процедуру для представления матрицы в графическом виде.По корреляционной матрице можно в первом приближении судить о тесноте связи факторных признаков х1, х2,…,xmмежду собой и с результативным признаком y, а также осуществлять предварительный отбор факторов для включения их в уравнение регрессии. При этом не следует включать в модель факторы, слабо коррелирующие с результативным признаком и тесно связанные между собой. Не допускается включать в модель функционально связанные между собой факторные признаки, так как это приводит к неопределенности решения.
Выбор уравнения модели, в большинстве случаев, производятся среди функций перечисленных в таблице 3. В системе STATISTICA для построения линейного уравнения множественной регрессии можно воспользоваться модулем множественной регрессии
, определив зависимую (dependent) переменную y и независимые (independent) переменные х1, х2, x3, x4.Статистический вывод о пригодности (значимости) уравнения регрессии в системе Statistica обычно проверяется в следующей последовательности.
10.Проводится общаяпроверка модели, целью которой является выяснение, объясняют ли х-переменные значимую долю изменения у. Определение значимости модели рекомендуется проводить по следующим методам (см. табл. 5).
Таблица 5
Критерий Фишера | Использование уровня значимости α | Использование коэффициента детерминации R2 |
Проверяется нулевая гипотеза H0о равенстве полученных коэффициентов регрессии нулю: a0=a1=a2=…=am=0. Для этого рассчитанное системой Statistica значение F-критерия (Fрасч), сравнивается с табличным значением Fтабл, определяемым с использованием специальных таблиц по заданным уровню значимости (например, a=0,05) и числу степеней свободы (df1=m, df2=n-m-1). Если выполняется неравенство Fрасч < Fтабл, то с уверенностью, например на 95 %, можно утверждать, что рассматриваемая зависимость y = а0 + a1x1+ … +amxmявляется статистически значимой. | Если рассчитанное в Statistica значение уровня значимости р больше, чем заданный уровень значимости a (например, a=0,05), то полученный результат нужно трактовать как незначимый(для 95% вероятности). В том случае, когда величина р<0,05, то вывод такой: это значимое уравнение с вероятностью 95%. | Рассчитанная системой Statistica величина сравнивается с табличными (критическими) значениями , определяемым с использованием специальных таблиц по заданному уровню значимости (например, α =0,05). Если окажется, что > , то с упомянутой степенью вероятности (95 %) можно утверждать, что анализируемая регрессия является значимой. |
Если регрессия неявляется значимой, то говорить больше не о чем.
В при веденном примере модель значима, т.к. вычисленный уровень значимости модели р=0,000000<0,05.
Осуществив переход к результатам регрессии (Summary: Regression results) получаем уравнение линейной множественной регрессии вида y(x1, x2, x3, x4)=6,9+0,07x1 –0,00035x2–2,08x3+0,00003x4:
2. Если регрессия оказывается значимой, то существует взаимосвязь между параметром у и переменными х1, х2,…,xm. Однако остается неясно, каково влияние конкретных факторов х1, х2,…,xm на исследуемую функцию у. Можно продолжить анализ, используя t-тесты для отдельныхкоэффициентов регрессии а0, a1,a2,…,amс целью выяснить, насколько значимой является влияние той или иной переменной х на параметр у при условии, что все другие факторы хk остаются неизменными. Проверку на адекватность коэффициентов регрессии рекомендуется проводить по следующим эквивалентным методам (см. табл. 5).
Таблица 5
Использование t-критерия Стьюдента | Использование уровня значимостиα |
Анализируемый коэффициент а0,a1,a2,…,amсчитается значимым, если рассчитанное системой Statistica для него значение t-критерия по абсолютной величине превышает tтабл, определяемым с использованием специальных таблиц по заданным уровню значимости (например, a=0,05) и числу степеней свободы (df=n-m-1). | Коэффициент регрессии а0,a1,a2,…,amпризнается значимым, если рассчитанное системой Statistica для него значение уровня значимости р меньше (или равно) 0,05 (для 95%-ной доверительной вероятности). |
Т.к. вычисленные уровни значимости p-level для коэффициентов, стоящих при x2 и x4 меньше 0,05, то они не значимы. К аналогичному выводу можно прийти, воспользовавшись t-критерием: t2(10)=-0,013<2,228 и t3(10)=1,44<2,228.
С учетом этого факта, пересчитаем уравнение множественной регрессии, выбрав в качестве зависимой (dependent) переменную y и независимые (independent) переменные х1 и x3, коэффициенты при которых значимы: