Смекни!
smekni.com

Теория принятия решений (стр. 10 из 12)

сij =

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето – одно удовольствие! Максимальные элементы – это те, чьи строки состоят из всех единиц (кроме себя самих – там может быть как нуль, так и единица). А оптимальные по Парето элементы – это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа – это матрица, строки которой соответствуют вершинам, а столбцы – дугам. При этом предполагается, что граф не должен иметь петель.


Элементы матрицы инцидентности будут такими:

сij =

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов – нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы – это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы – это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Раздел 6. Принятие корпоративных решений

6.1Групповая оценка объектов

В приведенном выше материале подразумевалось, что ЛПР – это некий эксперт-аналитик, принимающий решение по поставленной проблеме. А если проблемой занимаются несколько экспертов? А решение то должно быть одно! Такая задача называется задачей группового выбора или задачей принятия корпоративного решения.

Тут нужно отметить один важный психологический момент. Взрослого человека (начиная лет с 5-10) практически никогда невозможно заставить изменить свое мнение. (Есть, конечно, "безотказные" методы типа насилия, или денежного подкупа, но они к науке не имеют никакого отношения.) Поэтому эксперты в группе всегда будут:

- иметь разные мнения по поводу набора критериев, по которым надо оценивать альтернативные решения;

- иметь разные мнения о сравнительной значимости (весовых коэффициентах) критериев;

- давать разные оценки альтернатив по критериям;

- кроме этого эксперты будут иметь разную компетентность.

Исходя из таких очевидных фактов, можно с уверенностью утверждать, что у группы экспертов всегда должен быть руководитель.

Каждый из экспертов группы в принятии своего решения будет руководствоваться своим опытом и своими знаниями. Будем надеяться, что вышеприведенный материал окажет экспертам некую посильную помощь. Материал данного подраздела предназначен для руководителей групп экспертов, которые на основе всех решений группы обязаны приять единственное правильное решение.

Вспомним, как обычно преодолеваются групповые разногласия? В подавляющем большинстве случаев это делается с помощью обыкновенного голосования.

Рассмотрим формализованный пример голосования. В таблице начальных данных отражены количественные оценки четырёх альтернативных решений девятью экспертами:

Для начала необходимо найти множество Парето: это будут альтернативы А1, А2, А4. Оптимальное решение будем искать среди них. Для проведения голосования определим функцию полезности:

Z* = max

,

В последнем столбе таблицы размещены результаты голосования. Как видим, оптимальным решением является альтернатива А4 – за неё проголосовало пять экспертов из девяти – больше половины.

При всей простоте, широкой распространенности и многовековой исторической традиции использования метод голосования имеет один существенный недостаток. Голосование не считается с мнением меньшинства. Мнение меньшинства полностью игнорируется! Но иногда ведь случается, (правда очень редко) что именно среди этого меньшинства и находилось наилучшее решение! Кроме практического результата голосование наносит психологический удар по тем экспертам, мнения которых были отброшены. Математические методы принятия корпоративных решений стараются исправить этот недостаток. Учитываются мнения всех экспертов.


Рассмотрим такую функцию полезности с нормирующими множителями:

Z* = max

,

где aj =

.

В этом случае оптимальным решением является альтернатива А1.

Заметим, что такой способ учитывает также и то, что эксперты пользовались разными шкалами оценок объектов.

А теперь попробуем учесть ещё и степень компетентности каждого эксперта. Функция полезности при этом будет выглядеть так:

Z* = max

,

где aj – те же нормирующие множители,

kj – коэффициенты компетентности экспертов.

Ниже будет рассмотрен один из способов определения коэффициентов компетентности экспертов.

А пока рассмотрим ту же задачу с уже якобы вычисленными коэффициентами компетентности экспертов. В таблице снова сначала – условие, ниже – результаты:

А теперь мы получили в качестве оптимальной альтернативу А2.

Надо отметить, что приведенные два последних способа принятия группового решения годятся только для согласованных суждений экспертов. Согласованность – это степень расхождения мнений экспертов. Методика вычисления согласованности оценок экспертов достаточно сложна. По необходимости с ней можно ознакомиться в специальной литературе по принятию корпоративных решений.

Если эксперты честно оценивают реальный объект, то их оценки не должны сильно расходиться. Если же они все-таки существенно расходятся, то можно получить часто упоминаемую в литературе так называемую "среднюю температуру по больнице". Действительно, если сложить температуру всех высокотемпературных больных и температуру тел в морге, а потом поделить на общее количество замеров, то можно получить 36,6°. Свидетельствует ли это о том, что "в среднем" все находящиеся в больнице здоровы?

Если согласованность оказалась низкой, то нужно пытаться выяснить причину расхождений и по возможности попытаться устранить её. Часто причиной может быть отсутствие важной информации у некоторых экспертов. В некоторых случаях эксперты разбиваются на две устойчивые группы. Группы нужно уметь выявлять и обрабатывать отдельно.

6.2Определение коэффициентов компетентности экспертов

Теперь опишем одну из методик определения коэффициентов компетентности экспертов.

Рассмотрим опять нашу задачу, в которой принимали участие девять экспертов. Предложим каждому из девяти экспертов в отдельности самому сформировать экспертную группу. Каждый эксперт может включить в экспертную группу произвольное количество участников. Себя он может как включать в эту группу, так и нет. В результате получим матрицу Х, состоящую из элементов хij :

Х = {хij} =


Допустим, наши эксперты проголосовали друг за друга следующим образом:

По данным этой матрицы вычисляются коэффициенты компетентности экспертов:

ki =

Вычислим коэффициенты компетентности экспертов для нашей задачи и результаты занесем в таблицу:

Крайний правый столбец – это коэффициенты компетентности экспертов. Они уже были использованы в примере группового выбора, рассмотренного выше.

Раздел 7. Критерии модульного оценивания знаний

Кредитно-модульная система – это модель организации учебного процесса, которая основывается на объединении двух составляющих: модульной технологии обучения и кредитов (зачетных единиц) и охватывает содержание, формы контроля качества знаний, навыков и учебной деятельности студента в процессе аудиторной и самостоятельной работы.

Рейтинговая система оценивания – это система определения качества выполненной студентом всех видов аудиторной и самостоятельной работы и уровня приобретенных им знаний и навыков путем оценивания в баллах результатов этой работы во время текущего модульного и полусеместрового итогового контроля, с последующим переведением рейтинговой оценки в баллах в оценки традиционной национальной шкалы и шкалы ECTS.

Рейтинговая оценка состоит из баллов, которые студент получает за определенную учебную деятельность на протяжении усвоения данного модуля – тестирование, выполнение и защита индивидуальных задач (домашних контрольных работ), выполнение аудиторной самостоятельной работы и выступления на практических занятиях и т.п..

Семестровый курс дисциплины "Теория принятия решений" разбит на 4 модуля. В конце каждого модуля проводится модульный контроль в виде аудиторной контрольной работы (АКР) или защиты домашней контрольной работы (ДКР), который оценивается до 25 баллов.

Для модуля №1 максимальный рейтинговый балл – 25 баллов распределяется следующим образом:

- аудиторная контрольная работа – 20 баллов;

- выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Для модуля №2 максимальный рейтинговый балл – 25 баллов распределяется следующим образом:

- аудиторная контрольная работа – 20 баллов;

- выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Для модуля №3 максимальный рейтинговый балл – 25 баллов распределяется следующим образом:

- домашняя контрольная работа – 20 баллов;