· Области проектирования ИС
· Переход экономики страны на рыночные отношения привел к тому, что в области проектирования ИС появился самостоятельный рынок услуг. Он охватывает работы по проектированию, покупке и установке вычислительной техники, разработке локальных сетей, прокладке сетевого оборудования и обучению пользователей. Компании, предоставляющие такие услуги, получили название системных интеграторов. Следует отметить, что этот термин имеет два понятия. Согласно первому под термином “системный интегратор” понимаются как компании, специализирующиеся на сетевых и телекоммуникационных решениях (сетевые интеграторы), имеющие в свою очередь сеть своих продавцов, так и компании – программные интеграторы. Существует и другая трактовка понятия “системный интегратор”, которая закрепляет за компанией комплексное решение задач заказчика при проектировании ИС. При этом имеется в виду, что заказчик полностью доверяет детальную проработку и реализацию проекта системному интегратору, оставляя за собой лишь определение исходных данных и задач, которые должна решать реализуемая ИС.
Свойства систем, описываемые ниже, основаны на системных представлениях В.П. Морозова, проанализировавшего ряд исследований, посвященных этому вопросу. Академик В.Г. Афанасьев выделил 10 основных свойств системы.
1. Интегративность – системообразующий фактор, учитывающий как цель создания системы, так и связь её с надсистемами, в интересах которых создается проектируемая система. Интегративность включает в себя одно из главных качеств, отличающих системный подход от ньютоновского. Таким качеством является эмергентность – невыводимость выходных свойств системы ЕС из суммы свойств элементов ЕА
При этом не только появляются новые системные свойства, но могут исчезнуть отдельные свойства компонентов, наблюдавшиеся до включения в систему. Кроме того, интегративность устанавливает связи и между внутренними параметрами системы и её поведением где А – свойства компонентов системы; S – структура системы; D – внутреннее системное время; Т – текущее реальное время; F – способ функционирования.
2. Единство противоположностей компонентов А. В качестве компонентов могут выступать элементы, функциональные ячейки, устройства, представляющие иерархию структуры, а также процессы или отношения, характеризующие природу компонентов. Компоненты, несовместимые с системой, отторгаются системой. Функционирование компонентов является основой существования системы. По своему назначению компоненты могут быть основными, обеспечивающими и служащими для связи и управления. Относительно самостоятельные компоненты разной физической природы создают целостность системы.
3. Структура S. Устанавливает внутреннюю организацию и способы взаимосвязи и взаимодействия компонентов.
4. Системное время D. Подчёркивает, что поведение системы обязательно должно рассматриваться в динамике, т.е. развиваться во времени и пространстве, включая все значимые этапы в процессе функционирования системы, такие, как зарождение, становление, развитие, регресс и гибель.
5. Функционирование F. Направлено на достижение поставленных целей, является источником развития системы, для его описания необходимо задать наборы компонентов и функций. Б.С. Флейшман отмечает следующие принципы усложняющегося процесса функционирования:
а) вещественно-энергетический баланс (соблюдение законов сохранения);
б) гомеостазис (греч. homeo statis – подобный неподвижному; понятие введено физиологом Л. Кенноном) имеющий ряд особенностей:
· каждый механизм приспособлен к своей цели;
· целью его является поддержание значений основных переменных внутри заданных границ (регулирование освещённости в помещении, содержание глюкозы в крови, устойчивое и оптимальное функционирование экономической системы в изменяющейся социальной среде и т.п.);
· в основе гомеостазиса лежит механизм обратных связей;
в) самоорганизация на основе выбора и коррекции;
г) преадаптация, т.е. приспособление к возможным и предвидимым изменениям в условиях функционирования системы;
д) рефлексия – вид функционирования, находящий всё большее применение в информационных технологиях, когда происходит взаимодействие искусственного и естественного интеллектов и осуществляется принцип опережающего отражения.
6. Целесообразность Z. Смысл создания системы в выполнении поставленной перед ней цели. Сложные и большие системы, как правило, являются многоцелевыми, причём цели под воздействием внешних условий могут изменяться. Цель является одним из главных системных факторов и определяет локальные цели компонентов.
7. Коммуникационность К. Она определяет связи системы с внешней средой, что является необходимым условием существования системы. Содержанием коммуникаций является обмен со средой материей, энергией и информацией.
8. Внутренние противоречия. Позволяют прогнозировать развитие компонентов системы, связей между ними и их функций и являются источником движения и развития системы.
9. Внешние противоречия. Включают в себя взаимоотношения между системой и средой и формируют саму систему, её цели и функции.
10. Способность к управлению и самоуправлению.
Учёт вышеприведенных свойств при проектировании системы должен способствовать созданию эффективных информационных систем.
Для исследования принципов управления, построения и анализа соответствующих информационных систем, количественной оценки устойчивости и качества управления, а также его влияния на эффективность функционирования системы необходимо использовать принципы и элементы системного подхода.
Системный подход – исследования и разработки, проводимые с помощью моделей систем с учетом различной общности, разных типов, классов организованности и предметных областей явлений.
При системном подходе исследователь рассматривает проблему в целом и изучает поведение объекта (его реакцию на различные воздействия), абстрагируясь от его внутреннего устройства. Универсальный способ такого описания объекта – это наблюдение за состоянием выходов системы в различные моменты времени и установление их зависимостей от состояния входов. Объектом такого рассмотрения являются не только свойства системы, но и более широкая совокупность, включающая в себя кроме самой системы также и ее взаимосвязи с исследователем.
Поэтому основное содержание системного анализа заключается не в использовании формального математического аппарата, описывающего “системы” и “решения проблем”, и не в специальных математических методах, а в его концептуальном, т.е. понятийном аппарате, в его идеях, подходе и установках. Принципы системного анализа базируются на целостном представлении исследуемых объектов, поскольку система определяется системными объектами, свойствами и связями. Системными объектами являются вход, выход, процесс, обратная связь, критерий и ограничение.