Смекни!
smekni.com

Прогнозирование емкости и коньюктуры рынка (стр. 1 из 4)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Московский Государственный Текстильный Университет

имени А. Н. Косыгина

кафедра экономики

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ (вариант №23, 1 и 2 часть)

По курсу:

«Прогнозирование емкости и коньюктуры рынка».

Выполнил: студент группы 47-03

Котляр Владимир

Проверил:

Станкевич А.В.

Москва – 2007


Задание № 1

Период 1 2 3 4 5 6 7 8 9 10
Уровень ряда 16,7 17,2 17,5 19,4 16,8 19,3 16,5 19,4 18,1 16,1

На основании данных о еженедельном спросе на текстильную продукцию:

1. построить график (рис. 1) и визуально оценить наличие в нем тенденции;

2. проверить наличие или отсутствие в исходном временном ряде тенденции с помощью коэффициента Кендэла;

3. если исходный ряд является стационарным, то рассчитать точечный и интервальный прогноз с периодом упреждения прогноза, равным 1.

Рис. 1. Еженедельный спрос на текстильную продукцию

При визуальной оценке наличия в графике тенденции можно отметить сильную его приближенность к полиному высокого порядка (шестой степени), использование которого нецелесообразно, поскольку полученные таким образом аппроксимирующие функции будут отражать случайные отклонения, что противоречит смыслу тенденции.

Таким образом, в результате визуальной оценки можно сделать вывод об отсутствии в графике тенденции.

2).

t Yt Pt
1 16,7 -
2 17,2 1
3 17,5 2
4 19,4 3
5 16,8 1
6 19,3 4
7 16,5 0
8 19,4 6
9 18,1 5
10 16,1 0
итого 177 22

Определим расчетное значение коэффициента Кендэла (tр):

tр = 4 × р – 1,
n× (n – 1)

где n – количество уровней во временном ряде.

tр = 4 × 22 – 1 = -0,0222
10 × (10 – 1)

Коэффициент Кендэла является случайной величиной, соответствует нормальному распределению и изменяется от -1 до +1. Теоретическими характеристиками коэффициента Кендэла являются математическое ожидание, которое равно нулю (Мt = 0) и дисперсия, рассчитываемая по формуле:

st2 = 2 × (2 × n + 5) .
9 × n ×(n – 1)
st2 = 2 × (2 ×10 + 5) = 50 = 0,062
9 ×10×(10 – 1) 810

Если сопоставить расчетное и теоретическое значение коэффициента Кендэла, то может возникнуть три ситуации.

1) (0 – td×

) < tр < (0 + td×
),

где td – коэффициент доверия.

Данный вариант означает, что с вероятностью td во временном ряде нет тренда.

2) tр < (0 – td×

)

Данный вариант означает, что с выбранной вероятностью в ряде имеет место убывающая тенденция.

3) tр > (0 + td×

)

Данный вариант означает, что с выбранной вероятностью в ряде имеет место возрастающая тенденция.

При выбранной вероятности 0,95 (95%) коэффициент доверия td = 1,96.

(0 – 1,96 ×

) < tр < (0 + 1,96 ×
)

- 0,488 < - 0,0222 < + 0,488

Таким образом, с вероятностью 95% можно говорить об отсутствии тенденции среднего уровня (тренда) во временном ряде.

3)

t Yt Yt-Yсреднее (Yt-Yсреднее)^2
1 16,7 -1 1
2 17,2 -0,5 0,25
3 17,5 -0,2 0,04
4 19,4 1,7 2,89
5 16,8 -0,9 0,81
6 19,3 1,6 2,56
7 16,5 -1,2 1,44
8 19,4 1,7 2,89
9 18,1 0,4 0,16
10 16,1 -1,6 2,56
177 14,6

Так как во временном ряде нет тенденции, то данный временной ряд является стационарным процессом.

Поскольку в ряде отсутствует тенденция, то точечный прогноз определяется как средняя арифметическая простая:

=
=
Syt ,
n

где n – количество уровней ряда.

=
=
177 = 17,7
10

Интервальный прогноз:

=
+ tg×
,

где tg – табличное значение по распределению Стьюдента с числом степеней свободы

К = n – 1 и уровнем значимости а;

– дисперсия временного ряда.
=
S(yt
)2
= 14,6 = 1,46
n 10

При заданном уровне значимости a = 0,05 (g = 1 – а = 1 – 0,05 = 0,95) и числе степеней свободы К = 10 – 1 = 9, определим табличное значение t-критерия Стьюдента (см. Приложение 1). Табличное значение критерия Стьюдента tg = 2,262.

Определим интервальный прогноз.

=17,7 – 2,262 ×
= + 14,8

=24,16 + 2,262 ×
= + 20,6

Таким образом, с вероятностью 0,95 (95%) можно говорить о том, что на 11-ю неделю уровень ряда будет находиться в промежутке между 14,8 и 20,6.


Задание № 2

Период 1 2 3 4 5 6 7 8 9 10 11 12
Уровень ряда 11,0 10,8 10,7 10,5 11,7 12,2 12,5 12,1 13,0 13,7 13,0 14,0

По данным о ежедневном обороте магазина «Ткани для дома»:

1. построить график исходного временного ряда и визуально оценить наличие в нем тенденции и возможный ее тип. Сгладить исходный временной ряд с помощью скользящей средней (шаг сглаживания равен 3). Построить график сглаженного ряда и визуально оценить возможный в нем тип тенденции. Оба графика построить на одном чертеже (рис. 2). Результаты обеих визуальных оценок отметить в отчете;

2. оценить с помощью метода Фостера – Стюарта и коэффициента Кендела наличие тенденции (в среднем и дисперсии) в исходном временном ряде. Сравнить полученные оценки с оценками, полученными при выполнении пункта 1, и сделать окончательный свой вывод. Результаты вывода отметить в отчете;

3. по исходным данным методом усреднения по левой и правой половине определить параметры линейного тренда

= а0 + а1t. Построить график исходного временного ряда и полученного линейного тренда на одном чертеже (рис. 3). Оценить визуально, отражает ли линейный тренд тенденцию временного ряда? Свой вывод отразить в отчете;

4. по исходным данным методом МНК рассчитать параметры линейного тренда

= а0 + а1t. Кроме того, выбрать нелинейную модель, которая, по вашему мнению, может хорошо описать тенденцию исходного временного ряда. Рассчитать параметры выбранной вами нелинейной трендовой модели. Построить три графика (исходный временной ряд, линейная и выбранная вами нелинейная трендовая модели) на одном чертеже (рис. 4). Определить аналитическим способом, какая из двух трендовых моделей (линейная и нелинейная) наилучшим образом аппроксимирует исходный временной ряд;

5. построить график ряда отклонений еt (рис. 5) и визуально оценить отсутствие в нем тенденции. Оценить адекватность выбранной модели тренда исходному ряду на основе анализа данных ряда отклонений;

6. рассчитать точечную и интервальную прогнозную оценку с периодом упреждения, равным t = 1.

1)

t yt Скользящая сумма 3 уровней Скользящая средняя из 3 уровней
1 11,9 -
2 12,6 36,7 18,35
3 12,2 38,7 19,35
4 13,9 40,4 20,2
5 14,3 42,8 21,4
6 14,6 44,2 22,1
7 15,3 44,3 22,15
8 14,4 45,5 22,75
9 15,8 46,9 23,45
10 16,7 49,9 24,95
11 17,4 50,2 25,1
12 16,1 - -