Смекни!
smekni.com

Прогнозирование емкости и коньюктуры рынка (стр. 4 из 4)

Если расчетное значение числа поворотных точек попадает в интервал
(М(Р) – td

) < P < (М(Р) + td
), то с выбранной вероятностью можно утверждать, что колебания величины et носит случайный характер.

(6,667 – 1,96

) < 7 < (6,667 + 1,96
)

4,029 < 7< 9.305

Таким образом, с вероятностью 95% можно утверждать, что колебания величины et носит случайный характер.

2) Распределение величины etсоответствует нормальному распределению. Для этого используем RS-критерий.

S

=
=
= 0,706
RSр = emax – emin = 1.09– (- 0,83) = 2,777.
S
0,706

Определим табличное значение RS-критерия по таблице «Значения RS-критерия для n от 10 до 30» (Приложение 3).

RS12Н = 2,67 + 2 × 3,18 – 2,67 = 2,772
20 – 10
RS12В = 3,85 + 2 × 4,49 – 3,85 = 3,978
20 – 10

Выдвинем нулевую гипотезу: величина et соответствует нормальному распределению. Для этого должно выполняться условие: RS12Н < RSр < RS12В.

Поскольку это условие выполняется (2,772 < 2,777 < 3,978), то с вероятность 0,95 (95%) можно утверждать, что распределение величины et соответствует нормальному распределению.

3) Математическое ожидание величины et равно нулю. Для проверки этого условия выдвинем нулевую гипотезу – Н0: М(et) = 0, после чего определим расчетное значение величины tр:

tр =
– 0
×
,
Se

где

– средняя арифметическая простая величины et; Se – среднее квадратическое отклонение величины et.
Set = 1.62 = 0,135
n 12

Se=

=
= 0,623
tр = 0,135 – 0 ×
= 0,75.
0,623

Найдем табличное значение tт (Приложение 1) по распределению Стьюдента при доверительной вероятности g = 1 – а = 1 – 0,05 = 0,95 и числе степеней свободы К = n – 1 = 12 – 1 = 11. В данном случае tт = 2,201.

Сопоставим табличное и расчетное значения. Если th<tт, то нулевая гипотеза принимается, и наоборот.

0,75 < 2,201, Þ с вероятностью 0,95 (95%) принимается нулевая гипотеза, т.е. М(et) = 0.

4) Независимость членов ряда между собой (проверка временного ряда на отсутствие автокорреляции). Для проверки данного условия используется критерий Дарбина – Уотсона, расчетное значение которого определяется следующим образом:

dр = S(et – et-1) 2 = 8,4451 =1,88.
S et2 4,483

dр¢ = 4 – 1,88 = 2,12.

По таблице «Распределение критерия Дарбина – Уотсона» для положительной автокорреляции (для 5% уровня значимости)» находим табличное значение d­­т. При n = 12 и V = 1 нижнее и верхнее значения распределения будут соответственно равны d1 = 1,08 и d2 = 1,36.

Сравним расчетное и табличное значения: dр > d2 (2,12 > 1,36). Таким образом, с вероятностью 95% можно говорить об отсутствии в ряде автокорреляции.

6). Рассчитаем точечную прогнозную оценку с периодом упреждения t = 1 для линейного тренда (

t= 11,614+ 0,459×t):

(n+t) = а0 + а1× (n+t);

(12+1) = 11,614+ 0,459× (12 + 1) = 17,581.

Интервальный прогноз для линейного тренда:

(n+t) =
(n+t) + tт× S
×
,

где n – число уровней ряда в периоде основания прогноза; t - период упреждения прогноза; tт­ – табличное значение по Стьюденту с уровнем значимости (а) и числом степеней свободы (К = n - 2); S

– стандартная ошибка тренда.

tт×

= К¢; Þ
(n+t) =
(n+t) + S
× К¢.

При t = 1 и n = 12 по таблице «Значение К для оценки доверительных интервалов прогноза при вероятности g = 0,9 (линейный тренд)» (Приложение 6) К¢ = 2,1274.

S

=
=
= 0,67.

Интервальный прогноз для линейного тренда

(12+1) = 17,581 + 0,67 × 2,1274=19,0064

(12+1) = 17,581 - 0,67 × 2,1274=16,1556

16,1556 <

13 < 19,0064, т.е. с вероятностью 0,9 (90%) можно утверждать, что на 13-ый день оборот магазина «Ткани для дома» составит от 16,1556 до 19,0064 д.е.

t= 11,12 + 0,67 ×t - 0,016 ×t2.

Рассчитаем точечную прогнозную оценку с периодом упреждения t = 1 для параболического тренда (

t= 11,12 + 0,67 ×t - 0,016 ×t2):

(n+t) = а0 + а1× (n+t) + а2× (n+t)2;

13 = 11,12 + 0,67 × 13 - 0,016 × 132 = 17,126.

Интервальный прогноз для нелинейного (параболического) тренда:

(n+t) =
(n+t) + S
×К¢.

При t = 1 и n = 12 по таблице «Значение К для оценки доверительных интервалов прогноза при вероятности g = 0,9 (параболический тренд)» (Приложение 7) К¢ = 2,636.

S

=
=
= 0,63.

Интервальный прогноз для нелинейного (параболического) тренда

13 = 17,126 + 0,63 × 2,636=18,7867

13 = 17,126 - 0,63 × 2,636=15,4653

15,4653 <

13 < 18,7867, т.е. с вероятностью 0,9 (90%) можно утверждать, что на 13-ый день оборот магазина «Ткани для дома» составит от 15,4653 до 18,7867 д.е.