Смекни!
smekni.com

Построение сетевого графика и определение резервов выполнения работы (стр. 2 из 3)

необходим для выполнения работ В и Г которые по отношению к работе А являются последующими. Результат работы Б необходим для выполнения работы К, которая по отношению к работе Б также является последующей. Работы Л и М выполняются последовательно и оказываются последующими для работы К. Работа Ж является результатом выполнения работы Г. Работы Д и И выполняются последовательно и оказываются последующими для работы В. Работа З происходит только после осуществления работ Е и Ж, где работа Е является последующей работе В. Работы Н, так же как и работа О выполняется только после осуществления работ З и И. После совершения работ М и Н выполняется работа Р. Работы С и Т выполняются последовательно и оказываются последующими для работы О. Завершающим событием, не имеющим последующих работ, является событие 14. Оно происходит после выполнения работ Р и Т. На основе объяснения взаимосвязи работ построим таблицу исходных данных (см. табл. 1).

Таблица 1 – Исходные данные

№ п/п Работы, окончание которых является необходимым условием для начала рассматриваемой Рассматриваемая работа
1 - А
2 - Б
3 А В
4 А Г
5 В Д
6 В Е
7 Г Ж
8 Е, Ж З
9 Д И
10 Б К
11 К Л
12 Л М
13 И, З Н
14 И, З О
15 М, Н Р
16 О С
17 С Т

3.2 Определение числа путей

В сетевой модели имеются пути, опирающиеся на исходное и

завершающее событие. Определим число путей в данной модели.

1. Цепь Б-К-Л-М-Р;

2. Цепь А-В-Д-И-Н-Р;

3. Цепь А-В-Е-З-Н-Р;

4. Цепь А-В-Е-З-О-С-Т;

5. Цепь А-В-Д-И-О-С-Т;

6. Цепь А-Г-Ж-З-О-С-Т; 7. Цепь А-Г-Ж-З-Н-Р.

Таким образом, в данном сетевом графике 7 путей.

3.3 Определение сроков окончания проекта и продолжительности критического пути

Существуют ненапряженные и критические пути. Они отличаются друг от друга продолжительностью времени. Наиболее протяженная по времени цепочка работ, ведущих от исходного к завершающему событию, носит название критического пути.

1. Цепь Б-К-Л-М-Р:17+8+30+19+24=98;

2. Цепь А-В-Д-И-Н-Р: 1+16+19+5+7+24=72;

3. Цепь А-В-Е-З-Н-Р: 1+16+12+8+7+24=68;

4. Цепь А-В-Е-З-О-С-Т: 1+16+12+8+6+19+12=74;

5. Цепь А-В-Д-И-О-С-Т:1+16+19+5+6+19+12=78;

6. Цепь А-Г-Ж-З-О-С-Т: 1+14+8+8+6+19+12=68; 7. Цепь А-Г-Ж-З-Н-Р: 1+14+8+8+7+24=62.

Цепь 1 представляет собой критический путь для данного сетевого графика, цепи 2-7 – подкритические пути, имеющие резервы времени.

Сроком окончания проекта принимаем продолжительность критического пути, как самой длинной цепочки. Для выбранной единицы измерения, например дни, проект завершится через 98 дней после своего начала.

Критическим путем, как было выяснено, будет являться путь, описываемый цепочкой 1. Работы, формирующие критический путь: Б-К-Л-М-Р.


3.4 Определение свободных резервов времени

Свободный резерв – это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее свободным резервом.

Цепь Б-К-Л-М-Р является критическим путем, значит на нем не могут быть получены полные резервы времени. Значит, корректировке могут подвергнутся пути, описываемые цепочками А-В-Д-И-Н-Р, А-В-Е-З-Н-Р, А-В-Е-З-О-С-Т, А-В-Д-И-О-С-Т, А-Г-Ж-З-О-С-Т и А-Г-Ж-З-Н-Р . Свободный резерв времени в нашем случае можем получить, рассматривая процесс выполнения работы К. Составим таблицу, наиболее полно характеризующую

временные параметры в данной сетевой модели. При этом:

· ранний срок начала работы:

;

· поздний срок начала работы:

;

· ранний срок окончания работы:

;

· поздний срок окончания работы:

;

· полный резерв:

;

· свободный резерв:

.

Процесс заполнения таблицы 2 произведем по следующему алгоритму:

1) Графа код работы заполняется на основе сетевого графика или перечня работ, расположенных в порядке их выполнения.

2) Количество предшествующих работ для исходного события равно 0, для остальных работ, имеющих второй цифрой в коде ту, с которой начинается данная работа.

3) Третья графа заполняется на основе сетевого графика или перечня работ с временными оценками.

4) Раннее начало работ, выходящих из исходного события, равно 0, а раннее окончание работ определяется путем выбора максимального их сроков раннего окончания предшествующих работ. Количество сравниваемых сроков равно количеству предшествующих работ, указанному в графе 1.

Таким образом, нельзя определить раннее начало последующих работ, не найдя раннего окончания предшествующих. В свою очередь раннее окончание каждой работы находится как сумма величин раннего начала и продолжительности данной работы.

5) Продолжительность критического пути находится после заполнения граф 4 и 5, как максимальная величина из сроков раннего окончания работ, которые ведут к завершающему событию. Найденная величина критического пути заносится в графу 7 (позднего окончания работ) для всех работ, ведущих к завершающему событию.

6) Заполнение графы 7 (кроме последней ее строки) – ведется снизу вверх следующим образом. Находятся все работы, последующие за рассматриваемой работой, и определяются разности между поздним окончанием этих работ и их продолжительностями. Минимальная из полученных величин заносится в графу 7 против рассматриваемой работы.

7) Данные графы 6 (позднее начало работы) находят как разность позднего окончания этих работ и их продолжительности (графа 7 - графа 3).

8) Полный резерв времени работы (графа 8) определяется разностью между значениями в графах 7 и 5 (или 6 и 4).

9) Резерв времени события j (графа 10) определяется следующим образом. В графе 7 отыскивается позднее окончание работы, заканчивающееся событием j. В графе 4 отыскивается раннее начало работы, начинающееся событием j. Разность этих величин является искомым резервом времени события j.

10) Свободный резерв времени работы Ксi,j определяется в результате вычитания значений графы 10 из значений граф 8.

Таблица 2 – Расчёт параметров работ

Код работы
1,2 1 0 1 0 1 0 0 0
1,3 17 0 17 0 17 0 0 0
2,4 14 1 15 61 75 60 0 60
2,5 16 1 17 61 77 60 0 60
3,9 8 17 25 17 25 0 0 0
4,6 8 15 23 51 59 36 60 24
5,6 12 17 29 47 59 30 60 30
5,7 19 17 36 47 62 30 60 30
6,8 8 2923 3731 59 67 3036 3036 00
7,8 5 36 41 62 67 26 26 0
8,11 7 413731 484438 67 74 263036 263036 000
8,12 6 413731 474337 67 73 263036 263036 000
9,10 30 25 55 25 55 0 0 0
10,11 19 55 74 55 74 0 0 0
11,14 24 74484438 98926862 74 98 0263036 0263036 0000
12,13 19 474337 666256 67 86 263036 202430 666
13,14 12 666256 787468 86 98 202430 202430 000

Изобразим схематично сетевую модель расчёта (рис. 17).

Рисунок 17

3.5 Графическое изображение возможностей резерва

Рассмотрим резервы полного и свободного времени для события 12-13.

Рисунок 18

На рисунке 18 величина Трi означает ранний срок начала события 12; Tni - ранний срок окончания события 12; Tpj- ранний срок начала события 13; Tnj - ранний срок окончания события 13.

Графически полный резерв времени может быть представлен как сумма двух отрезков АВ и СД. Каждый из этих отрезков охватывает величину резерва времени соответствующего события и величину возможного смещения начала или окончание работы. Эти последние величины зависят, естественно, от продолжительности самой работы. Сумма отрезков АВ и СF дает величину свободного резерва. Свободный резерв – это независимый резерв. Его использование на какой-либо работе не меняет величины свободных резервов остальных работ сети, так как при его исчислении в качестве плановых сроков начала выполнения всех работ приняты ранние сроки наступления событий.