В дополнение к допущениям по поводу компонентов модели, руководитель формулирует предпосылки относительно взаимосвязей внутри нее. К примеру, модель, предназначенная помочь в решении о том, сколько галлонов краски разных типов следует производить, должна, вероятно, включать допущение относительно зависимости между продажной ценой и прибылью, а также стоимостью материалов и рабочей силы. Точность модели зависит также от точности этих взаимосвязей.
Информационные ограничения: основная причина недостоверности предпосылок и других затруднений — это ограниченные возможности в получении нужной информации, которые влияют и на построение, и на использование моделей. Точность модели определяется точностью информации по проблеме. Если ситуация исключительно сложна, специалист по науке управления может быть не в состоянии получить информацию по всем релевантным факторам или встроить ее в модель. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но это может быть нереализуемым или непрактичным.
Иногда при построении модели могут быть проигнорированы существенные аспекты, поскольку они не поддаются измерению. Например, модель определения эффективности новой технологии будет некорректной, если в нее встроена только информация о снижении издержек в соответствии с увеличением специализации. Как показано на примере угольной шахты в гл. 3, трудно предсказуемое и измеряемое воздействие психологических установок рабочих также отражается на производительности. Если рабочим не нравится новый процесс, то рост издержек по причине прогулов, высокая текучесть кадров и заторы на производственных линиях могут помешать приросту производительности.
В общем, построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая информация настолько неопределенна, что ее трудно получить, исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и помощь консультантов.
Причины, по которым может быть снижена эффективность моделей:
Как все средства и методы, модели науки управления могут привести к ошибкам. Эффективность модели может быть снижена действием ряда потенциальных погрешностей. Наиболее часто встречающиеся - недостоверные исходные допущения, ограниченные возможности получения нужной информации, страхи пользователя, слабое использование на практике, чрезмерно высокая стоимость. Это наиболее общие проблемы моделирования.
Число всевозможных конкретных моделей науки управления безгранично. Наиболее распространенные типы – метод платежной матрицы (используется, когда требуется установить, какая альтернатива способна внести наибольший вклад в достижении цели), модели управления запасами (используется для определения времени размещения запасов на ресурсы и их количество, а также массы готовой продукции на складах), дерево решений (позволяет представить проблему схематично и сравнить возможные результаты визуально), модель линейного программирования (применяется для оптимального определения способа решения при наличии конкурирующих потребностей), экономический анализ (включает в себя методы оценки издержек и экономических выгод, а также относительно рентабельности деятельности).
Виды управленческих решений
Управление запасами: задача управления запасами возникает, когда необходимо создать запас материальных ресурсов или предметов потребления с целью удовлетворения спроса на заданном интервале времени (конечном или бесконечном). Для обеспечения непрерывного и эффективного функционирования практически любой организации необходимо создание запасов. В любой задаче управления запасами требуется определять количество заказываемой продукции и сроки размещения заказа. Спрос можно удовлетворить путём однократного создания запаса на весь рассматриваемый период времени или посредством создания запаса для каждой единицы времени этого периода. Эти два случая соответствую избыточному запасу (по отношению к единице времени) и недостаточному запасу (по отношению к полному периоду времени).
При избыточном запасе требуется более высокие удельные (отнесённые к единице времени) капитальные вложения, но дефицит возникает раже и частота размещения заказов меньше. С другой стороны, при недостаточном запасе удельные капитальные вложения снижаются, но частота размещения заказов и риск дефицита возрастает. Для любого из указанных крайних случаев характерны значительные экономические потери. Таким образом, решения относительно размера заказа и момента его размещения могут основываться на минимизации соответствующей функции общих затрат, включающих затраты, обусловленные потерями от избыточного запаса и дефицита.
Любая модель управления запасами, в конечном счете, должна дать ответ на два вопроса: Какое количество продукции заказывать? Когда заказывать?
Ответ на первый вопрос выражается через размер заказа, определяющего оптимальное количество ресурсов, которое необходимо поставлять каждый раз, когда происходит размещение заказа. В зависимости от рассматриваемой ситуации размер заказа может меняться во времени. Ответ на второй вопрос зависит от типа системы управления запасами. Если система предусматривает периодический контроль состояния запаса через равные промежутки времени (например, еженедельно или ежемесячно), момент поступления нового заказа обычно совпадает с началом каждого интервала времени. Если же в системе предусмотрен непрерывный контроль состояние запаса, точка заказа обычно определяется уровнем запаса, при котором необходимо размещать новый заказ.
Таким образом, решение обобщённой задачи управления запасами определяется следующим образом;
В случае периодического контроля состояния запаса следует обеспечивать поставку нового количества ресурсов в объеме размера заказа через равные интервалы времени.
В случае непрерывного контроля состояния запаса необходимо размещать новый заказ в размере объема запаса, когда его уровень достигает точки заказа.
Размер и точка заказа обычно определяются из условий минимизации суммарных затрат системы управления запасами, которые можно выразить в виде функции этих двух переменных. Суммарные затраты системы управления запасами выражаются в виде функции их основных компонент следующим образом:
Затраты на приобретение становятся важным фактором, когда цена единицы продукции зависит от размера заказа, что обычно выражается в виде оптовых скидок в тех случаях, когда цена единицы продукции убывает с возрастанием размера заказа. Затраты на оформление заказа представляют собой постоянные расходы, связанные с его размещением. Таким образом, при удовлетворении спроса в течение заданного периода времени путем размещения более мелких заказов (более часто) затраты возрастают по сравнению со случаем, когда спрос удовлетворяется посредством более крупных заказов (и, следовательно реже). Затраты на хранение запаса, которые представляют собой расходы на содержание запаса на складе (например, процент на инвестированный капитал, затраты на переработку, амортизационные расходы и эксплутационные расходы), обычно возрастают с увеличением уровня запаса. Наконец, потеря дефицита представляют собой расходы, обусловленные отсутствием запаса необходимой продукции. Обычно они связаны с ухудшением репутации поставщика у потребителя и с потенциальными потерями прибыли.
Обобщенная модель управления запасами, описанная выше выглядит довольно простой. Чем же тогда объясняется столь большое разнообразие моделей этого класса и методов решения соответствующих задач, базирующихся на различном математическом аппарате: от простых схем дифференциального и интегрального исчисления до сложных алгоритмов динамического и других видов математического программирования? Ответ на этот вопрос определяется характером спроса, который может быть детерминированным (достоверно известным) или вероятностным (задаваемым плотностью вероятности). На рисунке 2 приведена схема классификации спроса, обычно принимаемая в моделях управления запасами. Детерминированный спрос может быть статическим, в том смысле, что интенсивность потребления остаётся неизменной во времени, или динамическим, когда спрос известен достоверно, но изменяется в зависимости от времени. Вероятностный спрос может быть стационарным, когда функция плотности вероятности спроса неизменна во времени, и не стационарным, когда функция плотности вероятности спроса изменяется во времени.
В реальных условиях случай детерминированного статистического спроса встречается редко. Такой случай можно рассматривать как простейший. Так, например, хотя спрос на такие продукты массового потребления, как хлеб, может меняться от одного дня к другому, эти изменения могут быть столь незначительными, что предположение статичности спроса несущественно искажает действительность.
На первом уровне предполагается, что распределение вероятности спроса стационарно во времени. Это означает, что для описания спроса в течение всех исследуемых периодов времени используется одна и та же функция распределения вероятностей. При таком предположении влияние сезонных колебаний спроса в модели не учитывается.