Оглавление.
Введение.
1. Основные принципы моделирования систем управления.
1.1. Принципы системного подхода в моделировании систем управления.
1.2. Подходы к исследованию систем управления.
1.3. Стадии разработки моделей.
2. Общая характеристика проблемы моделирования систем управления.
2.1. Цели моделирования систем управления.
3. Классификация видов моделирования систем.
Заключение.
Список литературы.
1.1. ВВЕДЕНИЕ
В данной курсовой работе по теме “Применение моделирования при исследовании систем управления” я попытаюсь раскрыть основные методы и принципы моделирования в разрезе исследования систем управления.
Моделирование (в широком смысле) является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.
В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации. Остановимся на философских аспектах моделирования, а точнее общей теории моделирования.
Методологическая основа моделирования. Все то, на что направлена человеческая деятельность, называется объектом (лат. objection — предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.
В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверке правильности гипотез большое значение в качестве метода суждения имеет аналогия.
Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:
1) моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды, о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;
2) моделирование, заключающееся в построении некоторой системы-модели (второй системы), связанной определенными соотношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.
1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МОДЕЛИРОВАНИЯ СИСТЕМ
Моделирование начинается с формирования предмета исследований — системы понятий, отражающей существенные для моделирования характеристики объекта. Эта задача является достаточно сложной, что подтверждается различной интерпретацией в научно-технической литературе таких фундаментальных понятий, как система, модель, моделирование. Подобная неоднозначность не говорит об ошибочности одних и правильности других терминов, а отражает зависимость предмета исследований (моделирования) как от рассматриваемого объекта, так и от целей исследователя. Отличительной особенностью моделирования сложных систем является его многофункциональность и многообразие способов использования; оно становится неотъемлемой частью всего жизненного цикла системы. Объясняется это в первую очередь технологичностью моделей, реализованных на базе средств вычислительной техники: достаточно высокой скоростью получения результатов моделирования и их сравнительно невысокой себестоимостью.
1.1. Принципы системного подхода в моделировании систем.
В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Последний рассматривает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно. В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.
Объект моделирования. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством — стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы. Система S— целенаправленное множество! взаимосвязанных элементов любой природы. Внешняя среда Е— множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием. '
В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом S и внешней средой Е. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.
С развитием науки и техники сам объект непрерывно усложняется, и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, взаимосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.
Системный подход — это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но наиболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды Е из объективно существующей реальности и описание системы исходя из общесистемных позиций.
При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.
1.2. Подходы к исследованию систем.
Важным для системного подхода является определение структуры системы — совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.
При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана наразных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.
Менее общим является функциональное описание, когда рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов SiV) и подсистем Si системы, либо системы S в целом.
При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.
Проявление функций системы во времени S(t), т. е. функционирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.
Следует отметить, что создаваемая модель М с точки зрения системного подхода также является системой, т. е. S'=S'(M), и может рассматриваться по отношению к внешней среде Е. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвязей как внутри самой модели М, так и взаимодействия ее с внешней средой Е в значительной степени определяется тем, на каком уровне находится наблюдатель.