Смекни!
smekni.com

Моделирование систем управления (стр. 2 из 4)

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классичес­кий подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классичес­кого (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдель­ные подсистемы, т. е. выбираются исходные данные Д длямоделирования и ставятся цели Ц, отображающие отдельные сто­роны процесса моделирования. По отдельной совокупности исход­ных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некото­рая компонента К будущей модели. Совокупность компонент объ­единяется в модель М.

Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классичес­кий подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно неза­висимое рассмотрение отдельных сторон функционирования реаль­ного объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличитель­ные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возник­новение нового системного эффекта.

С усложнением объектов моделирования возникла необхо­димость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т. е. систе­мы более высокого ранга, и вынужден перейти на позиции но­вого системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся составной частью метасисте­мы.

Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, ког­да сказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхо­да повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды Е. Все это заставило ис­следователей изучать сложный объект не изолированно, а во вза­имодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.

Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорци-1 овальных их значимости, на всех этапах исследования системы 5" и построения модели М'. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного — формулировки цели функционирования. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которыенакладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, эле­менты Э и осуществляется наиболее сложный этап синтеза — вы-< бор В составляющих системы, для чего используются специальные критерии выбора КВ.

При моделировании необходимо обеспечить максимальную эффективность модели системы, которая определяется как некоторая разность между какими-то показателями результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.

1.3. Стадии разработки моделей.

На базе системного подхода может быть предложена и некоторая последовательность разработки мо­делей, когда выделяют две основные стадии проектирования: мак­ропроектирование и микропроектирование.

На стадии макропроектирования на основе данных о ре­альной системе S и внешней среде Е строится модель внешней среды, выявляются ресурсы и ограничения для построения моде­ли системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S. Постро­ив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позво­ляет реализовать возможности модели по воспроизведению отдель­ных сторон функционирования реальной системы S.

Стадия микропроектирования в значительной степени зави­сит от конкретного типа выбранной модели. В случае имитацион­ной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечении систе­мы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы S.

Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного под­хода: 1) пропорционально-последовательное продвижение по эта­пам и направлениям создания модели; 2) согласование информаци­онных, ресурсных, надежностных и других характеристик; 3) пра­вильное соотношение отдельных уровней иерархии в системе моде­лирования; 4) целостность отдельных обособленных стадий постро­ения модели.

Модель М должна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длитель­ное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели.

Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функци­онирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функциониро­вания реальной системы S.

2. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ

С развитием системных исследований, с расширением экспери­ментальных методов изучения реальных явлений все большее значе­ние приобретают абстрактные методы, появляются новые научные Дисциплины, автоматизируются элементы умственного труда. Важное значение при создании реальных систем S имеют математические методы анализа и синтеза, целый ряд открытий базируется на! чисто теоретических изысканиях. Однако было бы неправильно забывать о том, что основным критерием любой теории является практика, и даже сугубо математические, отвлеченные науки базируются в своей основе на фундаменте практических знаний.

Экспериментальные исследования систем. Одновременно с развитием теоретических методов анализа и синтеза совершенствуются и методы экспериментального изучения реальных объектов, появляются новые средства исследования. Однако эксперимент был и остается одним из основных и существенных инструментов познания. Подобие и моделирование позволяют по-новому описать реальный! процесс и упростить экспериментальное его изучение. Совершенствуется и само понятие моделирования. Если раньше моделирование! означало реальный физический эксперимент либо построение макета, имитирующего реальный процесс, то в настоящее время появились новые виды моделирования, в основе которых лежит постановка не только физических, но также и математических эксперимен­тов.

Познание реальной действительности является длительным и сложным процессом. Определение качества функционирования большой системы, выбор оптимальной структуры и алгоритмов! поведения, построение системы S в соответствии с поставленной! перед нею целью — основная проблема при проектировании современных систем, поэтому моделирование можно рассматривать как один из методов, используемых при проектировании и исследовании больших систем.

Моделирование базируется на некоторой аналогии реального и мысленного эксперимента. Аналогия — основа для объяснения изучаемого явления, однако критерием истины может служить только практика, только опыт. Хотя современные научные гипотезы могут создаться чисто теоретическим путем, но, по сути, базируются на широких практических знаниях. Для объяснения реальных; процессов выдвигаются гипотезы, для подтверждения которых ставится эксперимент либо проводятся такие теоретические рассуждения, которые логически подтверждают их правильность. В широком смысле под экспериментом можно понимать некоторую процедур организации и наблюдения каких-то явлений, которые осуществляв ют в условиях, близких к естественным, либо имитируют их. 3