При расчетах необходимо правильно выбрать количество множителей,
чтобы получилась положительно определенная матрица.
Достоинства метода Монте-Карло:
высокая точность расчетов;
высокая точность применительно к инструментам с нелинейными ценовыми характеристиками;
возможность моделирования любых исторических и гипотетических распределений, учет эффекта «толстых хвостов» и скачков цен (вегариска).
Недостатки метода Монте-Карло:
высокая сложность моделей и соответственно высокий риск неадекватности моделей;
высокие требования к вычислительной мощности и значительные затраты времени на проведение расчетов.
Вывод
В данной работе был рассмотрен метод Монте – Карло. Этот метод имитации применим для решения почти всех задач при условии, что альтернативы могут быть выражены количественно. Построение модели начинается с определения функциональных зависимостей в реальной системе, которые в последствии позволяют получить количественное решение, используя теорию вероятности и таблицы случайных чисел.
Модель Монте-Карло не столь формализована и является более гибкой, чем другие имитирующие модели. Причины здесь следующие:
при моделировании по методу Монте-Карло нет необходимости определять, что именно оптимизируется;
нет необходимости упрощать реальность для облегчения решения, поскольку применение ЭВМ позволяет реализовать модели сложных систем;
в программе для ЭВМ можно предусмотреть опережения во времени.
Данный метод является общепризнанным и наилучшим, так как обладает рядом непреодолимых достоинств, в частности использует гипотезу о нормальном распределении доходностей, показывает высокую точность для нелинейных инструментов и устойчив к выбор ретроспективы. К недостаткам можно отнести техническую сложность расчётов и модельный риск.
Список литературы
1. Ильин И. П. «Планирование на предприятии». М: 2002.
2. «Энциклопедия финансового риск-менеджмента» под. ред. Лобанова А. А. М: 2005.