Смекни!
smekni.com

The manager as a teacher: selected aspects of stimulation of scientsfsc thinking (стр. 8 из 20)

Principle of independence of the result of action. As it was already repeatedly underlined, the purpose/goal of any system is to get the appropriate/due (target-oriented) result of action arising from the performance of the system. Actually external influence, “having entered” the system, would be transformed to the result of action of the system. That is why systems are actually the converters of external influence into the result of action and of the cause into effect. External influence is in turn the result of action of other system which interacted with the former. Consequently, the result of action, once it has “left” one system and “entered” into another, would now exist independently of the system which produced it. For example, a civil engineering firm had a goal to build a house from certain quantity of building material (external influence). After a number of actions of this firm the house was built (the result of action). The firm could further proceed to the construction of other house, or cease to existor change the line of business from construction to sewing shop. But the constructed house will already exist independently of the firm which constructed it. The purpose of the automobile engine (the car subsystem) is burning certain quantity of fuel (external influence for the engine) to receive certain quantity of mechanical energy (the result of action of the engine). The purpose of a running gear (other subsystem of the car) is transformation of mechanical energy of the engine (external influence for running gear) into certain number of revolutions of wheels (result of action of running gear). The purpose of wheels is transformation of certain number of revolutions (external influence for wheels) into the kilometers of travel (result of action of wheels). All in all, the result of action of the car will be kilometers of travel which will already exist independently of the car which has driven them through. Photon released from atom which can infinitely roam the space of the Universe throughout many billions years will be the result of action of the exited electron. Result of a slap of an oar by water is the depression/hollow on the water surface which could have also remained there forever if it were not for the fluidity of water and the influence on it of thousand other external influences. However, after thousand influences it will not any more remain in the form of depression/hollow, but in the form of other long chain of results of actions of other systems because nothing disappears in this world, but transforms into other forms. Conservation law is inviolable.

System cycles and transition processes. Systems just like SFU have cycles of their activity as well. Different systems can have different cycles of activity and they depend on the complexity and algorithm of the control block. The simplest cycle of work is characteristic of a system with simple control block. It is formed of the following micro cycles: perception, selection and measurement of external influence by the “X” receptor; selection from “database” of due value of the result of action; transition process (NF multi-micro-cycle);

a) perception and measurement of the result of action by the “Y” receptor - b) comparison of this result with the due value – c) development of the decision and corresponding influence on SFU for the purpose of correction of the result of action – d) influence on SFU, if the result of action is not equal to the appropriate/due one, or transition to the 1st micro cycle if it is equal to the proper one – e) actuation of SFU – f) return to “a)”.

After the onset of external influence the “X” receptor would snap into action (1st micro cycle). Thereafter the value of the result of action which has to correspond to the given external influence (2nd micro cycle) is selected from the “database”. It is then followed by transition process (transition period, 3rd multi-micro-cycle, NF cycle): actuation of the “Y” receptor, comparison of the result of action with the due value selected from the “database”, corrective influence on SFU (the number of actuated SFU mill be the one determined by control blockin the micro cycle “c”) and again return to the actuation of the “Y” receptor. It would last in that way until the result of action is equal to the preset one. From this point the purpose/goal is reached and after that the control block comes back to the 1st micro cycle, to the reception of external influence. System performance for the achievement of the result of action would not stop until there new external influence emerges. The aforementioned should be supplemented by a very essential addition. It has already been mentioned when we were examining the SFU performance cycles that after any SFU is actuated it completely spends all its stored energy intended for the performance of action. Therefore, after completion of action SFU is unable of performing any new action until it restores its power capacity, and it takes additional time which can substantially increase the duration of the transition period. That is why a speed of movement (e.g., running) of a sportsman’s body whose system of oxygen delivery to the tissues is large (high speed of energy delivery) would be fast as well. And the speed of movement of a cardiac patient’s body would be slow because the speed of energy delivery is reduced due to the affection of blood circulation system which is a part of the body’s system of power supply. Sick persons spent a long time to restore energy potential of muscular cells because of the delayed ATP production that requires a lot of oxygen. Micro cycles from 1st to 2nd constitute the starting period of control block performance. In case of short-term external influence control block would determine it during the start cycle and pass to the transition period during which it would seek to achieve the actual result of action equal to the proper one. If external influence appears again during the transition period the control block will not react to it because during this moment it would not measure “Х” (refractory phase). Upon termination of the transition period the control block would go back/resort/ to the starting stage, but while it does so (resorts), the achieved due value of the result of action would remain invariable (the steady-state period). If external influence would be long enough and not vary so that after the first achievement of the goal the control block has time to resort to reception “X” again, the steady value of the result of action would be retained as long as the external influence continues. At that, the transition cycle will not start, because the steady-state value of the result of action is equal to the proper/due one. If long external influence continues and changes its amplitude, the onset of new transition cycle may occur. At that, the more the change in the amplitude of external influence, the larger would be the amplitude of oscillation of functions. Therefore, sharp differences of amplitude of external influence are inadmissible, since they cause diverseundesirable effects associatedwith transition period.

If external influence is equal to zero, all SFU are deactivated, as zero external influence is corresponded by zero activation of SFU. If, after a short while there would be new external influence, the system would repeat all in a former order. Duration of the system performance cycle is also seriously affected by processes of restoration of energy potential of the actuated SFU. Every SFU, when being actuated, would spend definite (quantized) amount of energy, which is either brought in by external influence per se or is being accumulated by some subsystems of power supply of the given system. In any case, energy potential restoration also needs time, but we do not consider these processes as they associated only with the executive elements (SFU), while we only examine the processes occurring in the control blocks of the systems. Thus, the system continually performs in cycles, while accomplishing its micro cycles. In the absence of external influence or if it does not vary, the system would remain at one of its stationary levels and in the same functional condition with the same number of functioning SFU, from zero to all. In such a mode it would not have transition multi-micro-cycle (long-time repeat of the 3rd micro cycle). Every change of level of external influence causes transition processes. Transition of function to a new level would only become possible when the system is ready to do it. Such micro cycles in various systems may differ in details, but all systems without exception have the NF multi-micro-cycle. With all its advantages the NF has a very essential fault, i.e. the presence of transition processes. The intensity of transition process depends on a variety of factors. It can range from minimal to maximal, but transition processes are always present in all systems in a varying degree of intensity. They are unavoidable in essence, since NF actuates as soon as the result of action of the system is produced. It would take some time until affectors of the system feel a mismatch, until the control block makes corresponding decision, until effectors execute this decision, until the NF measures the result of action and corrects the decision and the process is repeated several times until necessary correlation “... external influence → result of action...” is achieved. Therefore, at this time there can be any unexpected nonlinear transition processes breaking normal operating mode of the system. For this reason at the time of the first “actuation” of the system or in case of sharp loading variations it needs quite a long period of setting/adjustment. And even in the steady-state mode due to various casual fluctuations in the environment there can be a minor failure in the NF operation and minor transition processes (“noise” of the result of action of real system). The presence of transition processes imposes certain restrictions on the performance and scope of use of systems. Slow inertial systems are not suitable for fast external influences as the speed of systems’ operation is primarily determined by the speed of NF loop operation. Indeed, the speed of executive element’s operation is the basis of the speed of system operation on the whole, but NF multi-micro-cycle contributes considerably to the extension of the system’s operation cycle. Therefore, when choosing the load on the living organism it is necessary to take into consideration the speed of system operation and to select speed of loading so as to ensure the least intensity of transition processes. The slower the variation of external influence, the shorter is the transition process. Transition period becomes practically unapparent when the variation of external influence is sufficiently slow. Consequently, if external influence varies, the duration of transition period may vary from zero to maximum depending on the speed of such variation and the speed of operation of the system’s elements. Transition period is the process of transition from one level of functional state to another. The “smaller” the steps of transition from one level on another, the less is the amplitudeof transition processes. In case of smooth change of loadingno transition processes take place. The intensity of transition processes depends on the SFU caliber, force of external influence, duration of SFU charging, sensitivity of receptors, the time of their operation, the NF intensity/profundity and algorithm of the control block operation. But these cycles of systems’ performance and transition processes are present both in atoms and electronic circuitry, planetary systems and all other systems of our World, including human body.