Смекни!
smekni.com

The manager as a teacher: selected aspects of stimulation of scientsfsc thinking (стр. 7 из 20)

Quantity of the result of action. To achieve the preset goal the designation of the quality of the result of action only is not sufficient. The goal sets not only “what action the object should deliver” (quality of the result of action), but also “how much of this action” the given object should deliver (quantity of the result of action). And the system should seek to perform exactly as much of specific action as it is necessary, neither more nor less than that. The quality of action is determined by SFU type. The quantityis determined by the quantity of SFU. There are three quantitative characteristics of the result of action: maximum, minimum and optimum quantity of action. In the real world gradation of the results of action is required from the real systems. Therefore, the system performance should deliver neither maximum nor minimum, but optimum result. Optimum means performance based on the principle “it is necessary and sufficient”. It is necessary that the result of action should be such-and-such, but not another in terms of quality and adequate in terms of quantity, neither more nor less. Hence, the SFU cannot be the full-fledged systems. The systems are needed in which controllable/adjustable grading of the result of action would be possible. For example, it is required that the pressure of 100 mm Hg is maintained in the tissue capillaries. This phrase encompasses presetting of everything what is included in the concept “necessary and sufficient” at once. It is necessary... pressure, and it is enough... 10 mm Hg. It is possible to collate the SFU providing pressure, but not of 10 mm Hg, but, for instance, 100 mm Hg. It is too much. It is probably possible to collate theSFU which can provide pressure of 10 mm Hg and at the moment it might be sufficient. But if the situation has suddenly changed and the requirement is now 100 mm Hg rather than 10 mm Hg, what should be done then? Should one run about and search for SFU which may provide the 100 mm Hg? And what if it’s impossible to make such system which would be able to provide any pressure in a range, for example, from 0 to 100 mm Hg, depending on a situation? In order to provide the quantity of the result of action which is necessary at the moment, the grading of the results of action of systems is required. It could have been achieved by building the systems from a set of homotypic SFU of a type of composite SFU flow diagram. It has what is needed for the graduation of the result of action as it contains numerous SFU. If it could be possible to do it so that it enables actuating from one to all of SFU, depending on the need, the result of action would have as much gradation as many SFU is present in the system. The higher the required degree of accuracy, the more of minor gradations of the result of action should be available. Therefore, instead of one SFU with its extremely large scale result of action it is necessary to use such amount of SFU with minor result of action which sum is equal to the required maximum, while the accuracy of implementation of the goal is equal to the result of action of one SFU. However, composite SFU has no possibility to control the result of action as it has no the unit able of doing it. To deliver the result of action precisely equal to the preset one, it (the result of action) needs to be continually measured and measuring data compared with the task (with command, with “database”). The “database” is a list of those due values of result of action which the system should deliver depending on the magnitude of external influence and algorithm of the control block operation. The goal of the system is that each value of the measured external influence should be corresponded by strictly determined value of the resultof action (due value). To this effect it is necessary “to see” (to measure) the result of action of the system to compare it to the appropriate/due result. And for this purpose the control block should have a “Y” receptor which can measure the result of action and there should be a communication/transmission link (reciprocal paths) through which the information from a “Y” receptor would pass to the analyzer-informant, where the result of this measurement should be compared with what should be/occur (with “database”). The control block of the system should compare external influence with the due value, whereas the due value should be compared with own result of action to see its conformity or discrepancy with the due value. Composite SFU still can compare external influence with eigen result of action, because it has DPC, whereas it can not any longer compare due value with the result of eigen action just because it does not have anything able of doing it (there are no appropriate elements).

Simple control block (negative feedback - NF). In order for the control block of the system to “see” (to feel and measure) the result of action of the system, it should have a corresponding “Y” receptor at the outlet/exit point/ of system and the communication link between it and a “Y” receptor (reciprocal path). The logic of operation of such control consists in that if the scale of the result of action is lager than that of the preset result it is necessary to reduce it, having activated smaller number of SFU, and if it is small-scale it is necessary to increase it by actuating larger number of SFU. For this reason such link is called negative. And as the information moves back from the outlet of system towards its beginning, it is called feedback/back action.As a result the negative feedback (NF) occurs. A “Y” receptor and reciprocate path comprise NF and together with the analyzer-informant and efferent cannels (stimulator) form a NF loop. Depending on the need and based on the NF information the control block would engage or disengage the functionsof controllable SFU as necessary. The difference of this system from the composite SFU lies only in the presence of a “Y” receptor which measures the result of action and reciprocal paths through which the information is transferred from this receptor to the analyzer. The number of active SFU is determined by NF. The NF is realized by means of NF loop which includes the “Y” receptor, reciprocal path, through which information from “Y” receptor is transferred to the analyzer-informant, analyzer proper and efferent channels through which the control block decisions are transferred to the effectors (controllable SFU). Thus, the system, unlike SFU, contains both DPC and NF. Direct positive (controllable) communication activates the system, while negative feedback determines thenumber of activated SFU. For example, if larger number of alveolar capillaries in lungs will be opened compared to the number of the alveoli with appropriate gas composition, arterialization of venous blood will be incomplete, and there will be a need to close a part of alveolar capillaries which “wash” by bloodstream the alveoli with gas composition not suitable for gas exchange. If the number of such opened capillaries will be smaller, overloading of pulmonary blood circulation would occur and the pressure in pulmonary artery will increase and there will be a need to open part of alveolar capillaries. In any case the informant of pulmonary blood circulation would snap into action and the control block would decide what part of capillaries needs to be opened or closed. Hence, the diffusion part of vascular channel of pulmonary bloodstream is the system containingsimple control block. The goal of the system is that the result of action of “Y” should be equal to the command “M” (Y=M). Actions of system aimed at the achievement of goal are implemented by executive elements. Control block would watch the accuracy of implementation of actions. The control block containing DPC and NF loop is simple. The algorithm of simple control blocks operation is not complex. The NF loop would trace continually the result of performance of executive elements (SFU). If the result of action turns out to be of a larger scale than the preset result, it needs to be reduced, and if the result is of a smaller scale than the preset one it needs to be increased. Control parameters (the “database”) are set through the command; for example, what should be the correlation between external influence and the result of action, or what level of the result of action will need to be retained, etc. At that, the maximum accuracy would be the result of actionof one SFU (quantum of action). Systems with NF, as well as composite SFU, alsocontain two types of objects: executive elements (SFU) (effectors which carry out specific actions for the achievement of the preset overallgoal of the system) and the control block (DPC and NF loop). But besides the “Х” informant, control block of the system also contains the “Y” informant (NF). Therefore, it has information both on the external influence and the result of action. Some complexification of the control block brings about a very essential result. The reason for such a complexification is the need to achieve optimally accurate implementation of the goal of the system. The NF ensures the possibility of regulation of quantity of the result of action, i.e. the system with NF may perform any required action in an optimal way, from minimum to maximum, accurate to one quantum of action. Generally speaking, any real system at that has the third type of objects: service elements, i.e. substructure elements without which executive elements cannot operate. For example, the aircraft has wings to fly, but it also has wheels to take off and land. The haemoglobin molecule contains haem which contains 4 SFU (ligands) and globin, the protein which does not participate directly in transportation of oxygen but without which haem cannot work. We have slightly touched upon the issue of existence of the third type of objects (service elements) for one purpose only to know that they are always present in any system, butwe will not go into detail of their function. We will only note that they represent the same ordinary systems aimed at serving other systems. Systems with NF can solve most of the tasks in a far better manner than simple or composite SFU. The presence of NF almost does not complexicate the system. We have seen that even simple SFU is a very complex formation including a set of components. Composite SFU is as many times more complex compared to simple SFU as is the number almost equalto that of simple SFU. The system with NF is only supplemented by one receptor and the communication link between receptor and analyzer (reciprocal path). But the effect of such change in the structure of control block is very large-scale and only depends on the algorithm of the control block operation. Any SFU (simple and composite) can implement only minimum or maximum action. Systems with NF can surely deliver the optimal result of action, from minimum to maximum; they are accurate and stable. Their accuracy depends only on the value of quantum of action of separate SFU and the NF profundity/intensity/ (see below). Stability is stipulated by that the system always “sees” the result of action and can compare it with the appropriate/due one and correct it if divergence occurs. In real systems the causes for the divergence are always present, since they exist in the real world where there always exists perturbation action/disturbing influences. Hence, one can see that it is NF that turnsSFU into real systems. How does the control block manage the system? What parameters are characteristic of it? Any control block is characterized by three DPC parameters and the same number of NF loop parameters. For DPC it is a minimal level of controllable input stimulus (threshold of sensitivity); maximal levelof controllable input stimulus (range of input stimulus sensitivity); timeof engagement of control (decision-makingtime). For NF loop it is minimal level of controllable result of action (threshold of sensitivity of NF loop – NF profundity/intensity); maximal level of controllable result of action (range of sensitivity of the result of action); timeof engagement of control (decision-makingtime). Minimal level of controllable input signal for DPC is the sensitivity threshold of signal of the “Х” receptor wherefrom the analyzer-informant recognizes that the external influence has already begun. For example, if рО2 has reached 60 mm Hg the sphincter should be opened (1 SFU is actuated), if the рО2 value is smaller, then it is closed. Any values of рО2 smaller than 60 mm Hg would not lead to the opening of sphincter, because these are sub-threshold values. Consequently, 60 mm Hg is the operational threshold of sphincter. Maximum level of controllable entrance signal (range) for DPC is the level of signal about external influence at which all SFU are actuated. The system cannot react to the further increase in the input signal by the extension of its function, as it does not have any more of SFU reserves. For example, if рО2 has reached 100 mm Hg all sphincters should be opened (all SFU are activated). Any values of рО2 larger than 100 mm Hg will not lead to the opening of additional sphincters, because all of them are already opened, i.e. the values of 60-100 mm Hg are the range of activationof the system of sphincters. Time of DPC activation is a time interval between the onset of external influence and the beginning of the system’s operation. The system would never respond immediately after the onset of external influence. Receptors need to feel a signal, the analyzer-informant needs to make the decision, the effectors transfer the guiding impact to the command entry points of the executive elements - all this takes time. The minimal level of the controllable exit signal for NF is a threshold of sensitivity of a signal of the “Y” receptor, wherefrom the analyzer-informant recognizes whether there is a discrepancy between the result of action of the system and its due value. The discrepancy should be equal to or more than the quantum of action of single SFU. For example, if one sphincter is to be opened and the bloodstream should be minimal (one quantum of action), whereas two sphincters are actually opened and the bloodstream is twice as intensive (two quanta of action), the “Y” receptor should feel an extra quantum. If it is able of doing so, its sensitivity is equal to one quantum. Sensitivityis defined by the NF profundity/intensity. The NF profundity/intensity is a number of quanta of action of the single SFU system which sum is identified as the discrepancy between the actual and appropriate/proper action. The NF profundity/intensity is presetby the command. The highest possible NF profundity/intensity is the sensitivity of discrepancy in one quantum of action of single SFU. The less the NF profundity/intensity, the less is sensitivity, the more it is “rough”. In other words, the less the NF profundity/intensity, the larger value of the discrepancy between the result of action and the proper result is interpreted as discrepancy. For example, even two (three, ten, etc.) quanta of action of two (three, ten, etc.) SFU is interpreted as discrepancy. Minimal NF profundity/intensity is its absence. In this case any discrepancy of the result of action with the proper one is not interpreted by the control block as discrepancy. The result of action would be maximal and the system with simple control block with zero NF profundity/intensity would turn into composite SFU with DPC (with simplest/elementary control block). For example, the system of the Big Circle of Blood circulation for microcirculation in fabric capillaries should hold average pressure of 100 mm Hg accurate to 1 mm Hg. At the same time, average arterial pressure can fluctuate from 80 to 200 mm Hg. The value “100 mm Hg” determines the level of controllable result of action. The value “from 80 to 200 mm Hg” is the range of controllable external (entry) influence. The value of “1 mm Hg” is determined by NF profundity/intensity. Smaller NF profundity/intensity would control the parameter with smaller degree of accuracy, for example, to within 10 mm Hg (more roughly) or 50 mm Hg (even more roughly), while the higher NF profundity/intensity would do it with higher degree of accuracy, for example to within 0.1 mm Hg (finer). Maximal NF sensitivity is limited to the value of quantum of action of SFU which are part of the system, and the NF profundity/intensity. But in any case, if discrepancy between the level of the controllable and preset parameters occurs to the extent higher than the value of the preset accuracy, the NF loop should “feel” this divergence and “force” executive elements to perform so that to eliminate the discrepancy of the goal and the result of action. Maximal level of controllable outlet/exit signal (range) for NF is the level of signal about the result of action of the system at which all SFU are actuated. The system cannot react to the further increase in entry signal by increase in its function any more,because it has no more of SFU reserves. The time of actuating of NF control is the time interval between the onset of discrepancy of signal about the result of action with the preset result and the beginning of the system’s operation. All these parameters can be “built in” DPC and NF loops or set primordially (the commandis entered at their “birth” and they do not further vary any more), or can be entered through the commandlater, and these parameters can be changed by means of input of a new command from the outside. For this purpose there should be a channel of input of the command. Simple control block in itself cannot changeany of these parameters. Absolutely all systems have control block, but it cannot be always found explicitly. In the aircraft or a spaceship this block is presented by the on-board computer, a box with electronics. In human beings and animals such block is the brain, or at least nervous system. But where is the control block located in a plant or bacterium? Where is the control block located in atom or molecule, or, for example, the control block in a nail? The easier the system, the more difficult it is for us to single out forms of control block habitual for us. However, it is present in any systems. Executive elements are responsible for the quality of result of action, while the control block – for its quantity. The control block can be, for example, intra- or internuclear and intermolecular connections/bonds. For example, in atom the SFU functions are performed by electrons, protons and neutrons, and those of control block by intra-nuclear forces or, in other words, interactions. The intra-atomic command, for example, is the condition that there can be no more than 2 electrons at the first electronic level, 8 electrons at the second level, etc., (periodic law determined by Pauli principle), this level being rigidly designated by quantum numbers. If the electron has somewise received additional energy and has risen above its level it cannot retain it for a long time and will go back, thereby releasing surplus of energy in the form of a photon. At that, not just any energy can lift the electron onto the other level, but only and only specific one (the corresponding quantum of energy). It also rises not just onto any level, but only onto the strictly preset one. If the energy of the external influence is less than the corresponding quantum, the electron level stabilization system would keep it in a former orbit (in a former condition) until the energy of external influence exceeded the corresponding level. If the energy of external influence is being continually accrued in a ramp-up mode, the electron would rise from one level to other not in a linear mode but by leaps (which are strictly defined by quantum laws) into higher orbits as soon as the energy of influence exceeds certain threshold levels. The number of levels of an electron’s orbit in atom is probably very large and equal to the number of spectral lines of corresponding atom, but each level is strictly fixed and determined by quantum laws. Hence, some kind of mechanism (system of stabilization of quantum levels) strictly watches the performance of these laws, and this mechanism should have its own SFU and control blocks. The number of levels of the electron’s orbit is possibly determined by the number of intranuclear SFU (protons and neutrons or other elementary particles), which result of action is the positioning of electron in an electronic orbit. For example, in a nail system the command would be its form and geometricalvalues. This commandis entered into the control block one-time at the moment of nail manufacture when its values (at the moment of its “birth”) are measured and is not entered later any more. But when the commandis already entered the system should execute this command, i.e. in this case the nail should keepits form and values even if it is being hammered. In any control block type the commandshouldbe enteredinto at some point of timein one way or another. We cannot make just a nail “in general”, but only the one with concrete form and preset values. Therefore, at the moment of its manufacture (i.e. one-time) we give it the “task”to be of such-and-such form and values. The command can vary if there is a channel of input of the command. For example, when turning on the air conditioner we can “give it a task” to hold air temperature at 20°С and thereafter change the command for 25°С. The nail does not have a channel of input of the order, while the air conditioner does. Consequently, the system with simple control block is the object which can react to certain external influence, and the resultof its action is graduated and stable. The number of gradation is determined by the number SFU in the system and the accuracy is determined by quantum of action (the size, result) ofsingle SFU and NF profundity/intensity. The result of action is accurate because the control block supervises it by means of NF. Type of control is based on mismatch/error plus error-rate control/. Control would only start after the occurrence of external influence or delivery of the result of action. Stability of the result of action is determined by NF profundity/intensity. System reaction is conditioned by type and number of its SFU. Simple control block has three channels of control: one external (command) and two internal (DPC and NF). It reacts to external influence through DPC (the “Х” informant) and to its own result of action of the system (the “Y” informant) through NF, whereas it controls executive elements of the system through efferent channels. Analogues of systems with simple control block are all objects of inanimate/inorganic world: gas clouds, crystals, various solid bodies, planets, planetary and stellar systems, etc. Biological analogues of systems with simple control block are protophytes and metaphytes, bacteria and all vegetative/autonomic systems of an organism, including, for example, external gas exchange system, blood circulation system, external gaseous metabolism system, digestion or immune systems. Even single-celled animal organisms of amoebas and infusorian type, inferior animal classes (jellyfish etc.) are the systems with complex control blocks/units (see below). All vegetative and many motor reflexes of higher animals which actuate at all levels starting from intramural nerve ganglia through hypothalamus are structured as simple control blocks. If they are affected by guiding influence of cerebral cortex, higher type (complex) reflexes come into service (see below). Analogues of the “Х” informant receptors are all sensitive receptors (haemo-, baro-, thermo- and other receptors located in various bodies, except visual, acoustical and olfactory receptors which are part of the “C” informant, see below). Analogues of the “Y” informant receptors are all proprio-sensitive receptors which can also be haemo-, baro-, thermo- and other receptors located in different organs. Analogues of the control block stimulators are all motor and effector nerves stimulating cross-striped, unstriated muscular systems and secretory cells, as well as hormones, prostaglandins and other metabolites having any effect on the functions of any systems of organism. Analogues of the analyzer-informant in the mineral and vegetative media are only connections/bonds between the elements of a type of direct connection of “X” and “Y” informants with effectors (axon reflexes). In vegetative systemsof animals connections are also of a type of direct connection of “X” and “Y” informants with effectors (humoral and metabolic regulation), as well as axon reflex (controls only nervules without involvement of nerve cell itself) and unconditioned reflexes (at the level of intra-organ intramural and other neuronic formations right up to hypothalamus). Thus, using DPC and NF and regulating the performance of its SFU the system produces the results of action qualitatively and quantitatively meeting the preset goal.