Смекни!
smekni.com

The manager as a teacher: selected aspects of stimulation of scientsfsc thinking (стр. 2 из 20)

5. Systemic thinking (the ability to consider the object, the problem in question within the integrityof their ties/relations and characteristics).

Creative thinking:

1. Ability of mental experimentation, spatial imagination.

2. Ability of independent transfer of knowledge for the decision of new problem, task, search of new decisions.

3. Combinatory abilities (the ability to combine the earlier known methods, ways of task/problem solution in a new combined, complex way – the morphological analysis).

4. Prognostic abilities (the ability to anticipate possible consequences of the decisions made, ability to establishcause-and-effect relations).

5. Heuristic way of thinking, intuitive inspiration, insight. The above stated abilities can be supplemented by specific abilities to work with information, for which purpose it is important to be able to select required (for specific goals) information from various sources to analyze it, systematize and generalize the data obtained in accordance with the cognitive task set forth, the ability to reveal problems in various fields of knowledge, in the surrounding reality, to make grounded hypotheses for their solution. It is also necessary to be able to put experiments (not only mental, but also natural), make well-reasoned conclusions, build the system of proofs, to be able to process statistically the data obtained from test and experimental checks, to be able to generate new ideas, possible ways of search of decisions, registration of results, to be able to work in the collective, while solving cognitive, creative tasks in cooperation with others, at that playing different social roles, as well as to be master of artand culture of communication.

Research and searchmethods of information processing:

1. Independent search and selection of information on specific problem.

2. Information analysis for the purpose of selection of facts, data necessary for the description of the object of study, its characteristics, qualities; for selection of facts conducive to the provability and/or refutation of the vision of the task/problem solution; building of facts, data analyzed in the logical sequence of proofs, etc.

3. Definition, vision of problems that need examination and solution.

4. Making hypotheses with definition of ways to check (solve) them.

5. Determination of methods, ways of solution of the investigated problem, stages of its solution by an individual or joint, group effort.

6. Registration of results of research or search activity.

7. Argumentation of the results achieved.

8. Projecting the occurrence of new problems in the given area of knowledge, practical activities.

Universal plan of scientific management (SM)

1. Statement of an overall goal (task) - minimum, optimum and maximum.

2. Setting of intermediate goals (tasks), their prioritization, time-frames of implementation.

3. Mechanisms (methods, schemes) of their achievement.

4. Required logistical, informationaland financial support.

5. Personnel (including statement of problem before each employee following detailed instructional advice and determination of implementation time-frames).

6. Ways and means of control, possible failures and disturbances, methods, time-frames, personnel, materials, equipment, informationand finance to rectify the latter.

7. Task adjustment in case of changes of situation, adaptation of the work performed (at all stages) to a new problem.

TRIZ – Inventive Problems Solution Theory (IPST)

Algorithm of activity:

1. A. Set a task. B. Imagine ideal result(is there a problem at all?). C. What prevents from the achievement of a goal (find contradiction), why does it prevent from its achievement (reveal cause-and-effect relations). D. On what conditions prevention will not occur?

2. A. Required (possible) internal changes (the sizes: larger, smaller, longer, shorter, thicker, thinner, deeper, shallower, vertically, horizontally, sloping, in parallel, in ledges, in layers/slices, transpose/rearrange, crosswise, convergence, to surround, to mix/stir, borders; the quantity: more, less, proportions, to divide, attach, add, remove; form: usual, unusual, rounded, straight, jags, unevenness, rough, equal, even/smooth, damage proof, delays, accidents, “foolproofing” and protection from larceny, to add; movement: to accelerate, slow down, stir up/revive/brighten up, stop, direction, deviation, pulling, pushing away, to block, lift, lower/pull down, rotate, fluctuate, arouse; condition: hot, cooler, firmer, softer, opened, closed, pre-assembled, disposable, combined, divided, hardening, liquid, gaseous, powder-like, wearability,to grease, moist, dry, isolated, gelatinous, plasmic, elastic, resists, superposes/matches). B. Division of an object (and/or subject) into independent parts: a. Segregation of weak (includingpotentially weak) part (parts). b. Segregation of requiredand sufficient part (parts). c. Segregation of identical (including duplicating, similar) parts(including in other systems). d. Divisioninto parts with different functions. C. External changes. D. Changes in the adjacent objects. a. Establishment of links between the previously independent objects performingone work (including a network). b. Removal of objects because of transferof their functions to other objects. c. Increase in the number of objects at the expense of the reverse side of the area. E. Measurement of time: faster, more slowly, longer, eternal, single-step, cyclic, time-wise marked, update, variable. F. Ascertainment of ties with other fields of knowledge (how is this contradiction solved there? what can be borrowed from there at all?). Prototypes in nature. G. Read the dictionaries for verbal associations (including non-standard). H. In case of failure revert to the initial problem to expand its situation/formulation.

3. A. Introduce necessary changes in the object (work). B. Introduce changes in otherobjects connected with the given one. C. Introduce changes in methods and expand the sphere of use of the object. D. Ask questions “how can we achieve the same result without using this product (using it partially) or without doing this work (doing it partially)?”, “how can we make the product (work) easier, more durable, safer, cheaper, in a more accelerated manner, pleasant, useful, universal, convenient, “friendly”, more ergonomic, harmless, pure, reliable, effective, attractive and bright, portable, valuable, status ranking, etc. E. Conduct preliminary tests, finish off, if necessary. Develop IGM (income generation mechanism). F. Check the applicability of the solution(s) found in respect of other problems. G. Take out a patent for the idea. See also: www.triz-journal.com, http://www.altshuller.ru/

Concepts, substance and laws of dialectics

1) The world (the being, reality) exists objectively, i.e. irrespective of the will and conscience of a human being. 2) The world has not been created by anybody and cannot be destroyed by anybody. It exists and develops in accordance with natural laws. There are no supernatural forces in it. 3) The world is unique and there are no “extra-mundane” spheres and phenomena in it (standing “above the world” or “beyond the world”) that are absolutely abjoint from each other. Diverse objects and the phenomena of the reality represent various kinds of moving matter and energy. 4) The world is coherent and is in eternal, continuous movement, development. Objects of the reality interact with each other, influence upon each other. In the process of development qualitative changes in objects, including natural transitionfrom the lowest forms to the higher, take place. 5) Natural development of a matter through a number of natural steps (the inorganic/inanimate nature/abiocoen/ – life – society) has led to the origin of human being, intellect, conscience. The crucial role in the segregation of human being from animality and the formation of its conscience was played by labor, its social nature, transition of the human being’s animal ancestors to regular productionand application of instruments of labor. 6) Society being the higher step of development of substance includes all lowest forms and levels (mechanical, physical, chemical, biological) on the basis of which it has arisen, but is not reduced to them only. It exists and develops on the basis of social laws which qualitatively differ from the laws of the lowest forms. The paramount law of social development is the determinant role of production in the life of the society. Mode of production of material life conditions social, political and spiritual processes of life in general. 7) The world is knowable. Human knowledge is unlimited by nature, but is limited historically at each stage of its development and for each separate individual. The criterion for the verity of thinking and cognition is public practice. In recent years the need arose for the formation of higher form of dialectic-materialistic outlook - “spiritual materialism”. Spiritual materialism extends the line of classical materialism in terms of recognition of objective character of existence, its cognoscibility, natural evolution of substance from the lowest to the higher forms, exclusion of notions of supernatural from scientific beliefs/notions, etc. At the same time, spiritual materialism overcomes absolutization of superiority of material over the spiritual, contraposition and discontinuity of these fundamentals inherent in the former forms of materialism, and directs towards the revelation of their unity, complex interrelation, interpenetration, definite fixation of relations in which the material and spiritual determine each other in the process of functioning and development of objects. Threemain laws of dialectics are: the lawof transition from quantity to quality,the law of unity and conflict of oppositesand the lawof negation of negation. There is more to it than these three major laws in dialectics. Abscque hoc, there are a number of other dialectic lawsconcretizing and supplementing organic laws of dialectics expressed in categories “substance and phenomenon”, “content and form”, “contingency and necessity”, “cause and effect”, “possibility and reality”, “individual, special and general”, the dialectic triad: thesis, antithesis andsynthesis. Categories and laws of dialectics exist within a certain system in which the substance/essence of dialectics properis expressed.

Analysis of the decision-making methods without use of numerical values of probability (exemplificative of the investment projects).

In practice situations are often found when it is difficult enough to estimate the value of probability of an event. In such cases methods are often times applied which do not involve using numericalvalues of probabilities: maximax – maximization of the maximumresult of the project; maximin – maximization of the minimum result of the project; minimax –minimization of maximum losses; compromise – Gurvitz’s criterion: weighing of minimum andmaximum results of the project. For decision-making on realization of investment projects a matrix is built. Matrix columns correspond to the possible states of nature, i.e. situations which are beyond of control of the head of an enterprise. Lines of the matrix correspond to possible alternatives of realization of the investment project – strategies which may be chosen by the director. The matrix cells specify the results of each strategy for each state of nature. Example: The enterprise analyzes the investment civil-engineering design of a line for the production of new kind of product. There are two possibilities: the construction of a high power capacity line or to construct low power line. Net present value of the project depends on the demand for production, whereas the exact volume of demand is unknown, however, it is known that there are three basic possibilities: absence of demand, average demand and great demand. The matrix cells (see table 1) show net present value of the project at a certain state of nature, provided that the enterprise will choose the appropriate strategy. The last line shows what strategy is optimumin each state of nature. The maximax decision would be to construct a high power capacity line: the maximum net present value will thus be 300 which correspond to the great demand situation. The maximum criterion reflects the position of the enterprise director – the optimist ignoring possible losses. The maximin decision, i.e. to construct a low power line: the minimum result of this strategy is the loss of 100 (which is better than possible loss of 200 in case of construction of a high power capacity line). The maximin criterion reflects the position of the director who is in no way disposed towards taking risk and is notable for his/her extreme pessimism. This criterion is quite useful in situations where risk is especially high (for example when the existence of an enterprise depends on the results of the investment project). Threat is determined by two components: possibilitiesand intention of the contestant.

Table 1. Example of construction of the matrix of strategy and states of nature for the investment project.

Strategy State of nature : absence of demand State of nature : medium demand State of nature : great demand
Construct a low power line 100 150 150
Construct a high power capacity line 200 200 300
Optimum strategy for the given state of nature Construct a low power line Construct a high power capacity line Construct a high power capacity line

To apply the minimax criterion let us construct “a matrix of regrets” (see table 2). The cells of this matrix show the extent/value of “regret”, i.e the difference between actual and the best results which could have been achieved by the enterprise at the given state of nature. “Regret” shows what is being lost by the enterprise as a result ofmaking wrong decision. The minimax decision corresponds to the strategy, whereby the maximum regret is minimal. In our case of low power line maximum regret makes 150 (in great demand situation) and for a high power capacity line – 100 (in the absence of demand). As 100 <150, the minimax decision would be to construct a high power capacity line. The minimax criterion is oriented not so much towards actual as possible damages or loss of profit.

Table 2.

Example of structure of the “matrix of regrets” for minimax criterion

Strategy State of nature: absence of demand State of nature: medium demand State of nature: great demand
Construct a low power line (-100) – (-100) =0 200 – 150=50 300 – 150=150
Construct a high power capacity line (-100) – (-200) =100 200 – 200=0 300 – 300=0
Optimum strategy for the given state of nature Construct a low power line Construct a high power capacity line Construct a high power capacity line

Gurvitz’s criterion consists in that minimum and maximum results of each strategy are assigned “weight”. Evaluation of result of each strategy equals to the sum of maximum and minimum results multiplied by corresponding weight.

Let’s assume that the weight of the minimum result is equal to 0.5, the weight of the maximum result equals to 0.5 as well (it is the probabilistic characteristic; in this case probability of onset of any option of events = 50 %, as far as we have 2 options : 50 % + 50 % = 100 %; if there will be 3 options, then the ratio can be 33,33 (%) for each or, for example, 20 %, 25 % and 55 %). Then the calculation for each strategy will be the following:

Low power line: 0.5 х (-100) + 0.5 х 150 = (-50) + 75 = 25;

High power capacity line: 0.5 х (-200) + 0.5 х 300 = (-100) + 150 = 50.

Gurvitz’s criterion testifies in favor of the construction of high power capacity line (as 50> 25). Advantage and simultaneously disadvantage of Gurvitz’s criterion consists in the necessity of assigning weights to the possible outcomes; it allows taking into account specificity of situation, however, assigning weights always implies some subjectivity. As a result of the fact that in real situations there is often lack of information on the probabilities of outcomes the use of the above methods in engineering of investment projects is quite justified. However, the choice of concrete criterion depends on the specificity of situations and individual preferences of an analyst (the company’s strategy).

“Data mining”, getting/acquisition of information (it should be noted that many modern “data mining” techniquesfocus mainly on search of information based on key parameters (words, images, matrixes, algorithms), but in that way we will only be able to bring out ties/links that have already been exposed by someone else). According to the theory of information (Stanislav Yankovsky), requisite condition of activity of intellectual (higher) system is the redundancy of incoming and generated information, read and think “to lay up in store/as a reserve”, accumulate “assets” which expands your possibilities and get rid of “liabilities” which reduce your potential. Any phenomenon should be analyzed from the view point of what it gives to you and what it takes from you. Even two most universal resources – money and information (sometimes “time” is added thereto) – also limit to some extent the possibilities of their holder. A very important point in the evaluation of information is reliability of the source of information and credibility of data itself. Specific code of marking information carriers is applied for this purpose. Reliability of source: A – absolutely reliable source; B – usually reliable source; C – quite reliable source; D – not always reliable source; E – unreliable source; F - reliabilityof source cannot be defined. Credibility of data: 1 – credibility of data is proven by data from other sources; 2 – data are probably correct; 3 – data are possibly correct; 4 – doubtful data; 5 – data are improbable; 6 – credibilityof data cannot be established. It should be noted that many elements of scientific, research and analytical activity are weakly formalizable, in which connection practical experience in the concrete field of activity gains great importance.