Limitation of system’s actions. Any system is characterized by qualitative and quantitative resources. The notion of resources includes the notion of functional reserve: what actions and how many of such actionsthe system may perform. Qualitative resources are determined by type of executive elements (SFU type), while quantitative resources by their quantity. And since real systems have certain and finite (limited) number of elements, it implies that real systems have limited qualitative and quantitative resources. “Qualitative resources” means “which actions” (or “what”) the given system is able to perform (to press, push, transfer, retain, supply, secrete, stand in somebody’s light, etc.). “Quantitative resources” means “how many units of measure” (liters, mm Hg, habitation units, etc.) of such actions the given system is able to perform.
Discrecity (“quantal capacity”) of the system’s functions. The system’s actions are always discrete (quantized) as any of its SFU work under the “all-or-none” law. There exists no smooth change of the system’s function, but there always exists phased (quantized) transition from one level of function to another, since executive elements actuate or deactivate regular SFU depending on the requirementsof system. Transition of systems from one level of functions to another is always effected by way of a leap. We do not always observe this gradation/graduality because of the fact that the amplitude of the result of action of individual SFU can be very small, but still it is always there. The amplitude of these steps of transition from one level to another determines the maximum accuracy of the result of action of systems and is stipulated by the amplitude of the result of action of individual SFU (quantum of action). Probably, elementary particles are the most minimal SFU in our World and consequently indivisible into smaller parts subjected to laws of physics of our World.
Communicativeness of systems. Conjugate systems interact with each other. Such communication implicates the link/connection between the systems, i.e. their communicativeness. We discern open and closed systems. However, there are no completely isolated (closed) systems in our world which are not affected by some kind of external influence and which are nowise influencing any other systems. One may find at least two systems which are nowise interacting with each other (do not react) among themselves, but one can always find the third system (and probably the group of intermediate systems will be required) which will interact with (react to) the first two, i.e. be a link between them. If any system does not react at all to any influences exerted by any other systems and its own results of action are absolutely neutral with respect to other systems, and it is impossible to find the third system or a group of systems with which this system could interact (react to), it means that the given systemdoes not exist in our World. Interaction between systems may be strong or weak, but it should be present, otherwise the systems do not exist for each other. Interaction is performed for the account of chains of actions: “... external influence → result of action...” By closing the end of such chain to its beginning we will get a closed (self-contained) system. The result of action after its “birth” does not depend on the system which has “gave birth” to it. Therefore, it may become external influence for the system itself. Then it will be a cyclically operating system, a generator with positive feedback. But the generator, too, requires for its performance the energy coming from the outside. Consequently, it is to some extent opened either. That is whythe absolutely closed systems are non-existent. Each system has a certain number of internal and external links/connections (between the elements and between the systems, accordingly), through which the system may interact with other externalsystems. Closeness (openness) of a system is determined by the ratio of the number of internal and external links/connections. The larger the ratio, the greater the degree of closeness of a system is. Space objects of a “black holes” type are assumed to be referring to closed systems because even photons cannot break off from them. But they react with other space bodies through gravitation which means that they “are opened” through the gravitation channel through whichthey “evaporate” (disappear).
Controllability of systems. Any system contains elements (systems) of control which supervise the correspondence between the result of action of the system and the goal set. These control elements form the control block. Management of system is carried outthrough commands given to its control block, whereas the control over its executive elements is exercised through sending commands to their control blocks. Any reflex is the manifestation of the work of the control block. And as far as control block is the integral accessory of any systems, any systems have their own reflexes. Executive elements should fulfill the goal exactly to the extent preset by the command, neither more nor less than that (neither minimum nor maximum, but optimum) based on a principle “it is necessary and sufficient”. Control elements watch the fulfillment of the purpose and if the result exceeds the preset one, the control block would force the executive elements to reduce the system’s function, whereas if it is lower than the preset result it will force to increase the system’s function. The purpose is dictated by conditions external with respect to the system. The command is entered into the system through the special entry channel. All consequences represent continuation of axioms, are stipulated by purposefulness of systems, constructed under laws of hierarchy and limited by the conservation law. The list of consequences could be continued, but those listed above are quite sufficient for the evaluation of any system. Such evaluation applies to both the properties of the system and its interaction with other systems. Evaluation of the first consequence can be expressed in percentage, i.e. what is the percentage of fulfillment (failure of fulfillment) of the goal/purpose. The goal may be any due value. Other consequences may also be characterized either qualitatively or quantitatively, which actually represents the system evaluation, i.e. its diagnostics, systemic analysis. The system is characterized by: the purpose/goal (determines designation of the system); hierarchy (determines interrelations between all the elements of the system without an exception); executive elements (SFU performing actions); control block (watches the correctness of performance of actions for the achievement of the goal). Anyobject, not only material, is also a system, provided it satisfies the above listed axioms and their consequences. Groups of mathematical equations, logic elements, social structures, relations between people, intellectual/spiritual values, may also represent systemsin which same principlesof functioning of systems work under the same logical laws. All of them have a purpose, their own SFU and control blocks which watch the implementation of the goal/purpose. If the object has a purpose it is a system. And for the achievement of this purpose it should have corresponding executive elements and control block with correspondinganalyzers, DPC and NF (which follows from the conservation law and the law of cause-and-effect limitations). Systemic analysis examines the systems and their elements in a coordinated fashion. The result of such analysis is the evaluation of correspondence of results of actions of the systems with their purposes and revealing the causes of the discrepancy for the account of determination of cause-and-effect relations between the elements of systems. The major advantage of systemic analysis is that only such an analysis allows establishing the causes of insufficiency of systems. The purpose/goal determines both the elementary structure of systems and interaction of its elements which is operated by the control block. The interaction of executive elements (SFU) only is not conducive to yielding stable result of action meeting the purpose preset for the system. Addition to a system of the control block adjusted to the preset purpose enables producing stable (constantly repeated) result of action of the system meeting the preset goal. The norm is such condition of a system which allows it to function and develop normally in the medium of existence which is natural for the given type of systems and to yield reactions of such qualitative and quantitative propertieswhich allow the system to protect its SFU from destruction. The notion of “norm” is relative with respect to averagestate of the system in the given conditions. In case if conditions alter, the system’s condition should change, too. Reaction is the action of the system aimed at producing the result of action necessary for its survival in response to external influence, i.e. the system’s function. Reaction is always specific. Reaction may be: normal (normal reactivity), insufficient(hypo-reactivity), excessive (hyper-reactivity), distorted (unexpected reaction occurs instead of the expected one). Normal reactivity (normal reaction) means that functional reserves of systems correspond to the force of external influence and the operating possibilities of control block allow to adjust (control) SFU so that the result of action precisely corresponds to the force of external influence. Hypo-reactivity of the system (pathological reaction) arises in cases when functional reserves of the given system of living organism are insufficient for the given force of external influence. Hypo-reactivity is always a pathological reaction. Hyper-reactivity of the system (normal or pathological reaction) is the one where the result of action of the system exceeds the target. Distorted reaction is a reaction of the system which mismatches its purpose. Pathology is the lack of correspondence of the systems’ resources to usual norms. Pathology includes other two important notions: pathological condition (defect) and pathological process (including vicious circle). Restoration is active influence on the system with a view to: liquidate or reduce excessive external influences destroying theSystemic Functional Units; liquidate or reduce destructive effects of vicious circleif it has arisen; strengthen the function of the affected (defective) subsystem, provided it does not lead to the activation of vicious circle; strengthen the function of systems conjugated with the defective one, provided it does not lead to strengthening the destructive effect of the vicious circle associated with the affected system or the development of vicious circles in other conjugated systems (does not lead to strengthening of the “domino principle”); replace the destroyed SFU with the operational ones. Any owner of the car knows that if something is broken in his/her car (as a result of excessive external influence) and the defect turns up, the transportation possibilities of its car sharply recede. If failing immediately repairing the car, the breakages would accrue catastrophically (vicious circle) because the domino principle will be activated. And to “cure” the car it is necessary to protect it from excessive external influencesand to liquidate the defects.
Mark A. Gaides Hospitality named after Khaim Shiba, Tel Aviv, Israel.
Crisis. According to Lewis Bornhaim, crisis is a situation where the totality of circumstances which were earlier quite acceptable, all of a sudden, due to the emergence of some new factor, becomes absolutely unacceptable, at that it’s almost inessential, whether the new factor is political, economic or scientific: death of a national hero, price fluctuations, new technological discovery; any circumstance may serve impetus for further events (“the butterfly effect”: the butterfly’s wing at the right place and timemay cause a hurricane). A well-known scientist Alfred Pokran devoted a special work to crises (“Culture, crises and changes”) and arrived at interesting conclusions. First, he notes that any crisis arises long before it factually comes on the scene. For example, Einstein has published fundamentals of relativity theory in 1905-1915, i.e. forty years before his works have ultimately led to the beginning of a new epoch and emergence of crisis. Pokran also notes that every crisis implies the involvement of a great number of individuals and characters, all of them being unique: “It is difficult to imagine Alexander the Great in front of Rubicon or Eisenhower in the field of Waterloo; it is just as difficult to imagine Darwin writing a letter to Roosevelt about potential dangers associated with nuclear bomb. Crisis is the sum of blunders, confusions and intuitive flashes of inspiration, a totality of observedand unobserved factors (which in systemic analysis is called a “bifurcation point”), an unstable condition of a system that may result in a number of outcomes:recovery of stable level, transition to other steadyequilibrium state characterized by new energy-and-informational level, or leap to a higher unstable level. At a bifurcation point a nonlinear system becomes very sensitive to small influences or fluctuations: indefinitely small influences may cause indefinitely wide variation of the condition of the system and its dynamics. Originality of any crisis hides its striking similarity with other crises. The unique feature of one and all /most and least/ crises is the possibility of prevision thereof in retrospect and irreversibility of solutions; characteristic frequencies of control processes sharply increase (a time trouble condition, shortage of time).
Power. Power is any possibility, whatever it is based on, to realize one’s own will in the given social relations, even notwithstanding counteraction. The power is also characterized as steady ability of achievement of the goals set with the support of other people. The concept of power is “sociologically amorphous”, i.e. the exercise of power does not imply the presence of any special human qualities (strength, intellect, beauty, etc.) or any special circumstances (confrontation, conflict, etc.). Any possible qualities and circumstances can serve for realization of will. These may include direct violence or threats, prestige or charm, any peculiarities of situation or institutional status, etc. An individual having a lot of money, holding senior position or being simply more charming person, the one who is able to use better than others the circumstances that turned up - that person, as a rule, would be the one having more power. For characterization of dictatorial/imperious capacity the concept of supremacy/domination is also used. Domination/supremacy implies the probability that the command of certain content will induce obedience in those to whom it is addressed. Domination/supremacy is a stronger notion than power. Domination is legitimate and institutionalized power, i.e. it is such a power which invokes the will to subordinate and fulfill the orders and instructions and which, at that, exists in a sustainable format accepted both by those dominating and dependent. With regard to the latter it is conventional to talk about domination structures. Such legitimate and institutionalized power is the state power. It is very important to distinguish the power from domination. For example, the person who is taken a hostage is under the authority of gunmen, but one can not say that they dominate over him/her. They force the hostage to obey by direct physical violence. But he/she does not want to obey and does not agree to recognize their right to dominate over him/her.