Metabolism and types of self-organization. All the above was only concerning the creation of new systems and their development. But any systems are continually exposed to various external influences which sooner or later destroy them. Our world is in continuous and uninterrupted movement. The speeds of this movement may vary: somewhere events occur once in millions years, while somewhere else millions times a second. But most likely it is impossible to finda single place in the Universe whereno movement of any kind (thermal, electric, gravitational, etc.) occurs. Hence, the process of negative entropy is always present. Any systems are always being reorganized at the expense of disintegration of more complex systems that have been existing earlier, which grow old (degenerate). Destruction is a process of loss by systems of their SFU. Systems of mineral nature (crystals, any other amorphous, but inanimate bodies, planetary, stellar and galactic systems) continuously undergo various external influences and are scattered with varying speed due to the loss of their SFU. Mineral nature grows old and changes, because the entropy law - from more complex to more simple - works. In the mineral nature complexification (generation) can only occur in case of excess of internal energy or its continuous inflow from the outside. Thus, in a thermonuclear pile of ordinary stars nuclei of complex atoms including atoms of iron were formed. But the energy of such piles is not yet sufficient for the formation of heavier nuclei. All other heavier nuclei were formed as a result of explosions of supernovae and the release of super-power energy. Therefore, figuratively speaking, our bodies are built of stellar ashes. But as soon as energy of thermonuclear synthesis comes to an end, the star starts to die out, passing through certain phases. We do not know yet all phases of the development and dying of stars, but if failing “to undertake some sort of measures” after a very long period of time not only stars, but atoms as well, including their components (protons, neutrons and electrons) will be shivered. Thus, the free neutron “unprotected” by intranuclear system breaks up into a proton, electron and neutrino within 12 minutes. Hence, the atomic and intranuclear system is the system of stabilization of a neutron protecting atom and its elements from disintegration. But even such stable and seemingly eternal stellar formations such as “black holes” “evaporate” in the course of time, expending their mass for gravitational waves. In the absence of energy inflow the system would just flake/scatter and lose its SFU. It follows explicitly from thermodynamics laws. The so-called “thermal entropic death” is coming forth. Destruction of systems under the influence of external environment is the forced entropic reorganization (degeneration), rather than self-organization. The objects of mineral nature possess only passive destruction protection facilities and one of the major means of protection is integration of elements in a system (generation). Consequently, the emergence of systems and their evolution in mineral nature represents means of protection of these elements from destruction. One can not conquer alone. The system is always stronger than singletons. Formation of connections/bonds between the elements and the emergence of generation type systems in mineral nature is the passive way of protection of elements against the destructive effect of negative entropy. The weakest bodies are ionic and gas clouds, while the strongest ones are crystals. However, all of them cannotresistexternal influences indefinitely long, because they react only after their occurrence, and they cannot resist entropy. Consequently, the presence of passive means for the protection against destruction is insufficient. Whatever solid and large the crystals might be, they would be scattered /flaked in the lapse of time either. In order to keep the system from destruction it is necessary to replenish destroyed parts continually. Systems of vegetative, animal and human nature also undergo various external influences and also are scattered (worn out) with varying speed. And it happens for the same reason and the same law of negative entropy, i.e. from more complex to more simple (degeneration) works. But these systems differ from the systems of mineral nature that actively try to resist destruction by continual renewal of their SFU structures. This renewal occurs at the expense of continuous building of new SFU in substitution of the destroyed ones. This process of renewal of destroyed SFU also represents structural regeneration as such – a purposeful metabolism. Therefore, metabolism of living organisms is an active way of protection of systems from destructive effect of negative entropy (from degeneration). In mineral nature metabolism may take place as well, but it essentially differs from metabolism of any living systems. Crystals grow from the oversaturated saline solution, the atmosphere exchanges water and gases with the seas, automobile and other internal combustion engines consume fuel and oxygen and discharge carbon dioxide. But if a crystal is taken out from saline solution, it will just collapse and will not undertake any measures on conservation of its structure. When a camshaft in the automobile engine is worn out the car does nothing to replace it. Instead, it is done by man. Any actions of the system directed towards the replacement of destroyed and lost SFU represent self-organization anyway, which in the living nature is called structural self-reorganization or metabolism. In mineral nature structural self-reorganization is nonexistent. Any living system, regardless of its complexity, would undertake certain actions for the conservation of its structure. At that, there are always two flows of substances in living systems – flow of energy and “structural”/constructive/ flow. The energy flow is intended to provide energy for any actions of systems, including structural self-reorganization, as it is necessary every time to build new connections/bonds which require energy (regeneration). “Structural” flow of substances is only used for structural regeneration, i.e. replacement of worn out SFU for the new ones (in this case we do not examine the system’s growth, i.e. generation). When we talk about self-reorganization we mean“structural” flow of substances, although such flow is impossible without energy. Myocardium in humans completely renews (regenerates) its molecular structure approximately within a month. It means that its myocardiocytes, or rather their elements (myofibrillas, sarcomeres, organelles, membranes, etc.) are continually being worn out and collapse, but are continually built again at the same speed. Outwardly we can see one and the same myocardial cell, but eventually its molecular composition is being completely renewed. Throughout the human lifespan the type of organization varies. In the early years of life organization occurs at the expense of inclusion of new additional elements in the structure (generation, the organism grows and develops), whereas starting from the mid-life period degeneration predominantly takes place, i.e. destruction process (disintegration of the previously existing more complex system). But these are now the particulars associated with imperfection of real living systems. For any system the overall objective is to exist in this World, and for this purpose it should counteract destructive influences, for which purpose it should have specific SFU which facilitate its operation and which continuously collapse and need to be continuously renewed, i.e. build anew, since regeneration is the essence of self-reorganization by means of metabolism. Hence, the living nature differs from inanimate first of all in that metabolism is intended for the conservation of its structure (structural regeneration). In principle, any reaction of any systems is directed towards conservation of the systems. Control block of systems takes care of it using all its possibilities for this purpose: DPC, NF and analyzers for the SFU operation. But in mineral nature there are only passive ways of protection. And when the system of mineral nature loses its SFU, it does not undertake any active measure to replace them. It would try to resist the external influence, but no more than that. In vegetative and animal nature and humans the systems cannot passively resist the destructive effect of environment either, they also collapse, but anyway they have active means of restoration of the destroyed parts, they have the purposeful metabolism aimed at replacement of the lost SFU (structural regeneration). It uses two mechanisms of the so-called genetic regeneration: reproduction of systems (the parent will die, but children will remain) and reproduction of elements of systems (regeneration of elements of cells and tissue cells themselves). These ways of conservation of systems are sufficiently effective. It is known how complex it is to get rid of weeds in the field. There are sequoias aged several thousand years that are found in nature. At the level of separate individuals of a species this genetic system proves as the system with simple control block, as simple automatic machine because the DNA molecule does not have remote sensors, is has no analyzer-correlator and it is impossible to develop conditioned reflexes in it during the lifespan of one individual. But at the level of species of living systems geneticmechanism proves anyway as a system withcomplex control block because it “has a notion” of space and it has collective memory in the form of conditioned reflexes and it is able of self-training (adaptation of species). It is for this reason that genetic accumulation of collective experience occurs, which then is shown in the form of instincts at the level of separate individuals of a species. This collective genetic mechanism watches that tomato looks like tomato, a cockroach looks like a cockroach and chimpanzee looks like a chimpanzee, and it watches that the behavior of the systems is relevant. We do not know yet all the details of this mechanism, although genomes of many living organisms, including human genomes, are developed. We know that genes contain recorded genetic information on how to structure this or another protein, but we do not know yet how, for example, how the form of the nose constructed from this protein is preset. The gene is known responsible for the generation of pigment that tinctures the iris /orbital septum/ but we do not know how the form and the size of this septum is coded. This mechanism is probably realized only partially in the DNA itself, as a genome of an insect has much more in common, let’s say, with a human genome, than the insect itself with the human being. We do not know how the feelers of any insect of such-and-such length are programmed and where it is recorded that it should have eight pedicles or one horn on its head. And why from these proteins programmed in one of the DNA genes structures in the form of the feelers should be built in this particular place, while the structures in the form of intestinal tubules should be built in another place. Protein molecules are very complex and gigantic formations in terms of molecular sizes with a very sophisticated three-dimensional configuration. Probably, separate molecules of certain albumen types, incidentally or non-incidentally, may approach each other so that to form, like in a puzzle, the albuminous conglomerate only of a specific shape. In that way it is possible to explain both the form and sizes of albuminous structures. We can also assumethat casually assembled lame/poor forms have been rejected by evolution, while those successful were purposefully fixed in genes. Consequently, the difference of forms of organs constructed of identical proteins is explained by the difference of the protein molecules structure? It may be true... But why then keratin here is formed in the shape of elytra, and there – in the form of horns or some kind of septa in the insect’s body? DNA only programs building material – albumen/proteins, rather than the structure (form), i.e. the organs built of these proteins, since DNA contains a record of only how to structure the proteins (the “bricks” for building a structure). But where is “the drawing of the entire building” and its configuration recorded? There are no answers for the present. So, living systems have the purposeful genetic structural regeneration which is intended for continual renewal of elements of the system. Genetic mechanism uses the “database” recorded in DNA and realized by means of RNA. If it were not for the failures in this system, there would have been no mutations and variability of species. However, the “faulty” mechanism of mutations is too much subjected to contingencies and cannot be target-oriented just because of contingency (incidental self-organization). Reproductive mechanism of mutations allows making selection by some features, and this is exactly a purposeful mutation (purposeful self-organization). This mechanism can change its program due to cross mating or at the moment of changing life phases (larva→chrysalis→moth), although the possibilities of such change are still very limited. A wolf will never beget a tiger and a trunk will never grow in a wolf either, even if there would be a sudden need in it, at least, for sure, not during the lifespan of one generation. But if me myself, for example, need right now to “reconstruct” a hand to extend it and to tear off a fruit from a tree, should I then wait for several generations to pass for my hand to grow and extend? Can’t one get transmuted without resorting to metabolism? It is possible if “conscious” self-organization is added. All living beings, including humans, have genetic system of contingency self-organization and in this sense the human being is the same animal as any other animal. But “conscious” and purposeful type of self-organization is only inherent in human beings. Systems with preset (target-oriented) properties will always be forming only in the event that organization or reorganization of systems is purposeful. Only the control block “knows” about the goal of the system and only it can make a decision, including on the system reorganization. However, not each control block is suitable for target-oriented reorganization. In order to decide that “that system” needs to be attached to itself it is necessary to “see” this system, know its property and define, even prior to beginning interaction, whether these properties suit for the achievement of its own purpose. And for this purpose it is necessary to be able to “see” and assess the situation around the given system. All self-training systems are able of making such an analysis. Therefore, many higher animals can reorganize their body by enhancing its possibilities with additional executive elements. They use tools of work (stones, sticks, etc.) for hunting food. But these animals, perhaps, act at the level of instincts, i.e. at the level of genetic self-organization, because even insects can use work tools. True “conscious” self-organization at the given stage of evolution is only present in human being because only he/she has analyzers-abstractors of respective degree of complexity. Only the human being could develop instruments of labor up to the level of modern technologies because it has second signaling system which helped to accumulate the experience of the previous generations by fixing it in the abstract form, in the form of the script. And only the human being using this experience has realized that there exists metabolism in a living organism and that it is possible to influence an organism so that to reorganize, if the need arises (to cure sick organism). Structural regeneration is intendedfor conservation of the systems’ structure. However, metabolism is not a full warranty from the destruction of systems either. Plants cannot foresee the forthcoming destruction because they do not possess the notion of space and they do not see the situation around them, because they have simple control block. Fire will creep up and burn a plant, the animal will approach and eat it, while the plant will quietly waiting for its lot because it does not see the surrounding situation, does not know the forecast and it does not have corresponding decisions regarding specific situations. That is why the systems emerged with more complex control blocks (animals and humans) which can anticipate a situation and protect themselves from destruction. Animals know about space and see the situation around, because they have more complex control blocks. They can compete very effectively with mineral and vegetative media. But competition between the animal species has placed them in new circumstances. Now it is not enough to have only complex control block and to see the surrounding situation. In order to survive it is not enough only to be able of scampering or be strong physically, it is necessary to better orient itself in space and better assess the situation and be able to make conclusions of own failures in case of survival. For this purpose it is necessary to develop control blocks. The more complex the control block, the higher is the degree of safety. And now it is not physical strength which is a criterion of advantage, but cognitive ability, i.e. the more complex the control block is (the brain with all its hierarchy of neural structures), the better. Knowledge is virtue. At that, the purposes of metabolism in animals and humans are the same as in flora, i.e. reproduction of systems and reproduction of elements of systems. Hence, in process of evolution advancement to ensure higher degree of safety of systems, the possibilities of regeneration in the form of metabolism were supplemented by intellectual possibilities of control blocks. Regardless of what kind of nature the system belongs to (mineral, vegetative, animal or human) one of its main purposes is always to preserve itself and its structure. But in mineral nature there are only passive ways of conservation, whereas in the organic nature active ways of conservation do exist: self-organization at the expense of purposeful metabolism. Therefore, struggle for food has always been the foundation of existence. But metabolism only is not sufficient. Therefore, in animals new active ways of protection are added: assessment of external situation and protection from the destructive external influences (complex reflexes, behavioral reactions). However, complex reflexes are not enough either, as it is necessary also to learn new situations and be able of making new decisions (reflexes to new stimuli/exciters). But these appeared to be insufficient as well because of limitation of personal experience. Therefore, personal experience was supplemented by collective experience for the account of the first signaling system (conditioned reflexes: the first signaling system, complex behavioral reactions). And as far as the lifespan of each system is limited, in order to transfer experience to the subsequent generations second signaling system emerged which allows to save personal experience of each system in the form of the script regardless of the system’s lifespan. Consequently in order to better preserve itself, it is necessary for the system to change and complicate continually the structure (evolution and development of species) and, apparently to be on the safe side, it’s nevertheless better to be more complex rather than simpler (evolution race). Thus, a system may have: incidental organization; generation (incidental physical coincidence of exit points of stimulator or result of action of one systems with the command entry points of control block or entry points of external influence of other systems; may be present in systems with any control blocks, including elementary); degeneration(destruction, structural simplification, loss of SFU under the influence of environment – other systems, may be the systems with any control blocks, including elementary); purposeful organization; forced generation (purposefulphysical combination of exit points of stimulator or result of action of one systems with the command entry points of control block or entry points of external influence of other systems; may be in systems with any control blocks, including elementary); forced degeneration (destruction, structural simplification, loss of SFU of the system due to the purposeful effect of other systems; may be in systems with any control blocks, including elementary); self-organization; functional regeneration (operation of the system proper, actuation or de-actuation of functions of own SFU, depending on situational needs, without change of the structure; may be in systems with any control blocks, including elementary); genetic structural regeneration in the form of metabolism and reproduction of individuals directedtowards preservation of its structure (may be in systems with control blocks, starting from simple ones); genetic structuralregeneration in the form of instinctive/subconscious/structural reorganization aimed at strengthening the possibilities of an organism by using other systems, that are not an immediate part of the given system (subjects) (uses “genetic” memory and may be present in systems with control blocks, starting from simple ones); conscious structural regeneration directed to strengthening of possibilities of an organism by use of other systems, not being an immediate part of the given system (subjects) (various technologies; it is aimed at strengthening the possibilities of an organism, may be present in systems with control blocks, starting from complex ones with the second signaling system). As we can see, there is a succession present in the given classification of organizationof systems, as it includes everything that exists in our World, starting from objects of mineral nature and including human activities in the form of industrial technologies.