Смекни!
smekni.com

Прогнозирование рыночных тенденций (стр. 1 из 2)

Алексеев А.А.

"Рынок" представляет собой крайне сложную кибернетическую модель с очень большим количеством внутренних и внешних факторов. Прогнозирование какого-либо фактора рыночной ситуации (например, объем продаж конкретной фирмы) невозможно только на основе тенденции самого фактора. Почему? Поведение отдельного рыночного фактора, позволю себе аналогию, подобно поведению бабочки в полете. Вспомните, как летит бабочка: ее полет выглядит с внешней стороны как "порхание" без определенной цели, хотя, очевидно, что она стремится к определенной цели - к цветку. Мы не обращаем внимания на внешние факторы, влияющие на бабочку: ветер, атмосферное давление, высота от земли, гравитация и т.п., и на внутренние: ее собственные силы, система ориентирования и т.п. Суть в том, что мы со стороны не можем предсказать, к какому цветку прилетит бабочку. Так же ведет себя и изучаемый отдельный рыночный показатель. Очевидно, что на объем продаж фирмы (как отдельный показатель) могут влиять продажи конкурентов, тенденции емкости сегмента, их объемы продажи, конъюнктура товаров-заменителей, сопутствующих товаров (услуг) и многие другие факторы. И такое влияние обусловливает поведение не только фактора объема продаж, но и любого внутрифирменного показателя. Тем не менее, такой прогноз необходим в рамках маркетинговых исследований. И поэтому давайте рассмотрим методику, которая, с одной стороны, не является чистым прогнозированием "показателя по показателю", с другой стороны учитывает взаимодействие показателя с другими рыночными факторами, не усложняя модели до ее не разрешимости.

Итак, давайте рассмотрим задачу, в которой коммерческому предприятию, не имеющему специального штата прогнозистов, необходимо спрогнозировать объем продаж по своему товару (услуге). При этом на рынке нет предприятий монополистов, поведение которых диктовало бы рыночную ситуацию - на рынке присутствует много мелких и средних предприятий. Требуется спрогнозировать объем продаж конкретной фирмы для планирования объема закупок (производства) услуги (услуг) и оценить риск принятия решения.

Этап I. Отбор факторов, вероятно определяющих количественное изменение объема продаж

Прогнозирование начнем с подбора факторов, которые "вероятно" определяют количественное изменение объема продаж. То есть мы создаем гипотезу в отношении возможных факторов, влияющих на поведение кривой продаж. Подбор факторов производится экспертным путем: эксперт по соответствующему рынку предполагает возможные параметры:

которые по мнению эксперта оказывают влияние на поведение продаж;

динамика которых, выраженная математически, известна на том же промежутке, что и объем продаж (то есть это количественный параметр или качественный, который можно преобразовать к количественной характеристике);

относящиеся как к внешним (факторы "внешней среды маркетинга" фирмы), так и внутренним (факторы "внутренней среды маркетинга" фирмы).

Число выбираемых факторов не ограничено, чем больше их будет на первом этапе, тем лучше, это определит более точный результат в прогнозировании. В данном примере (табл. 1) мы выбрали три абстрактных фактора, которые мы назвали F1, F2, F3.

Таблица 1 Подбор факторов (F1-F3), которые "вероятно" определяют количественное изменение объема продаж (Q)

Дата Q F1 F2 F3
мар.97 23 22 12 223
апр.97 34 34 2 456
май.97 55 45 3 556
июн.97 34 56 67 456
июл.97 22 77 34 567
авг.97 34 99 22 560
сен.97 44 102 33 334
окт.97 45 111 89 456
ноя.97 56 122 11 678

В случае затруднения в выборе факторов рекомендуется выбрать "макро" факторы внешней и внутренней среды для конкретного рынка и конкретной фирмы, например некоторые возможные из них:

"внешние факторы среды маркетинга фирмы"

курс валют;

емкость потребительского сегмента;

суммарные продажи на сегменте;

динамика численности конкурентов;

удовлетворенность сегмента товарами на рынке

"внутренние факторы среды маркетинга фирмы"

наличие товарного запаса;

эффективность работы штата менеджмента фирмы;

затраты на рекламу или тип рекламного сообщения;

изменение способа позиционирования товара;

изменение количества дистрибьютеров товара.

Этап II. Выделение "факторов влияния"

Теперь необходимо разобраться: какие из выбранных факторов ("факторы влияния") действительно оказывают влияние на изменение объема продаж, а какие нужно просто "отбросить" из рассмотрения. Критерием такого соответствия, безусловно, можно считать коэффициент корреляции, который показывает, насколько близки тенденции двух факторов (в данном случае - насколько связано распределение во времени факторов F1-F3, см. рис. 1).

Рис. 1. Динамика исследуемых факторов

В табл. 2 показан расчет коэффициента корреляции между объемом продаж (Q) и факторами (F1, F2, F3). Коэффициент корреляции может быть рассчитан, например, с помощью программного пакета MS Excel, в котором подобный расчет реализуется функцией "CORREL". Из расчета видно, что по коэффициенту корреляции в данном примере "факторами влияния" будут F1 и F3, а фактор F2 можно отбросить из рассмотрения.

Таблица 2 Отбор "факторов влияния" по коэффициенту корреляции

CORR F1 CORR F2 CORR F3
0,462 -0,057 0,458
Дата Q F1 F2 F3
мар.97 23 22 12 223
апр.97 34 34 2 456
май.97 55 45 3 556
июн.97 34 56 67 456
июл.97 22 77 34 567
авг.97 34 99 22 560
сен.97 44 102 33 334
окт.97 45 111 89 456
ноя.97 56 122 11 678

Этап III. Линейное прогнозирование "факторов влияния"

Теперь в нашем примере мы имеем динамику "факторов влияния" и объема продаж на период с марта 1997 по ноябрь 1997. Соответственно, мы прогнозируем по времени поведение каждого из "факторов влияния" (линейная тенденция для факторов, рассматриваемых в примере представлена в табл. 3). В принципе, в таком предсказании более точный результат будет получен при аппроксимации тенденций факторов и оценки прогнозируемого фактора по аппроксимированной функции. Но и использование линейного предсказания, реализуемого функцией "FORECAST" в пакете MS Excel, также допустимо. Способ реализации функции "FORECAST" представлен в табл. 3.

Таблица 3 Реализация линейного прогнозирования на основе функции "FORECAST" в пакете MS Excel

А В
1 Дата F1
2 мар.97 22
3 апр.97 34
4 май.97 45
5 июн.97 56
6 июл.97 77
7 авг.97 99
8 сен.97 102
9 окт.97 111
10 ноя.97 122
11 дек.97 =FORECAST(A11;B2:B10;A2:A10)

В табл. 4 представлены спрогнозированные линейным образом значения "факторов влияния" для рассматриваемого примера "предсказания объема продаж в будущем периоде".

Таблица 4 Линейное прогнозирование "факторов влияния" (спрогнозированная линейная тенденция для факторов F1, F2 представлена выделенными курсивом цифрами)

Дата F1 F3
мар.97 22 223
апр.97 34 456
май.97 45 556
июн.97 56 456
июл.97 77 567
авг.97 99 560
сен.97 102 334
окт.97 111 456
ноя.97 122 678
дек.97 140 599
янв.98 153 577
фев.98 166 584
мар.98 177 613

Этап IV. Прогнозирование продаж по прогнозу "факторов влияния"

Очевидно, что мы не можем прогнозировать продажи, используя только саму тенденцию продаж во времени, это как раз и рассматривалось бы как "прогнозирование фактора по самому фактору". Но у нас имеется тенденция "факторов влияния", которая по своей сущности определяет поведение тенденции продаж (это следует из рассчитанного нами коэффициента корреляции). И именно эта предсказанная тенденция позволяет нам спрогнозировать объем продаж в соответствии с со значениями каждого из факторов. Реализация такого алгоритма на основе функций MS Excel представлена в табл.

Таблица 5 Реализация алгоритма предсказания объема продаж по тенденциям "факторов влияния" на основе функций MS Excel

A B C D E F
1 Дата Q F1 Q1 TREND F3 Q3 TREND
2 мар.97 23 22 223
: : : : :
10 ноя.97 56 122 678
11 дек.97 =(D11+F11)/2 139 =FORECAST(C11;B2:B10;C2:C10) 598 =FORECAST(E11;B2:B10;E2:E10)

Отметим, что предсказанное значение объема продаж получается как среднеарифметическое от суммы предсказанных значений на основе каждого из "факторов влияния". Это позволяет учесть каждый из "факторов влияния" в прогнозе. Результат прогнозирования для нашего примера представлен в табл. 6.