Алексеев А.А.
"Рынок" представляет собой крайне сложную кибернетическую модель с очень большим количеством внутренних и внешних факторов. Прогнозирование какого-либо фактора рыночной ситуации (например, объем продаж конкретной фирмы) невозможно только на основе тенденции самого фактора. Почему? Поведение отдельного рыночного фактора, позволю себе аналогию, подобно поведению бабочки в полете. Вспомните, как летит бабочка: ее полет выглядит с внешней стороны как "порхание" без определенной цели, хотя, очевидно, что она стремится к определенной цели - к цветку. Мы не обращаем внимания на внешние факторы, влияющие на бабочку: ветер, атмосферное давление, высота от земли, гравитация и т.п., и на внутренние: ее собственные силы, система ориентирования и т.п. Суть в том, что мы со стороны не можем предсказать, к какому цветку прилетит бабочку. Так же ведет себя и изучаемый отдельный рыночный показатель. Очевидно, что на объем продаж фирмы (как отдельный показатель) могут влиять продажи конкурентов, тенденции емкости сегмента, их объемы продажи, конъюнктура товаров-заменителей, сопутствующих товаров (услуг) и многие другие факторы. И такое влияние обусловливает поведение не только фактора объема продаж, но и любого внутрифирменного показателя. Тем не менее, такой прогноз необходим в рамках маркетинговых исследований. И поэтому давайте рассмотрим методику, которая, с одной стороны, не является чистым прогнозированием "показателя по показателю", с другой стороны учитывает взаимодействие показателя с другими рыночными факторами, не усложняя модели до ее не разрешимости.
Итак, давайте рассмотрим задачу, в которой коммерческому предприятию, не имеющему специального штата прогнозистов, необходимо спрогнозировать объем продаж по своему товару (услуге). При этом на рынке нет предприятий монополистов, поведение которых диктовало бы рыночную ситуацию - на рынке присутствует много мелких и средних предприятий. Требуется спрогнозировать объем продаж конкретной фирмы для планирования объема закупок (производства) услуги (услуг) и оценить риск принятия решения.
Этап I. Отбор факторов, вероятно определяющих количественное изменение объема продаж
Прогнозирование начнем с подбора факторов, которые "вероятно" определяют количественное изменение объема продаж. То есть мы создаем гипотезу в отношении возможных факторов, влияющих на поведение кривой продаж. Подбор факторов производится экспертным путем: эксперт по соответствующему рынку предполагает возможные параметры:
которые по мнению эксперта оказывают влияние на поведение продаж;
динамика которых, выраженная математически, известна на том же промежутке, что и объем продаж (то есть это количественный параметр или качественный, который можно преобразовать к количественной характеристике);
относящиеся как к внешним (факторы "внешней среды маркетинга" фирмы), так и внутренним (факторы "внутренней среды маркетинга" фирмы).
Число выбираемых факторов не ограничено, чем больше их будет на первом этапе, тем лучше, это определит более точный результат в прогнозировании. В данном примере (табл. 1) мы выбрали три абстрактных фактора, которые мы назвали F1, F2, F3.
Таблица 1 Подбор факторов (F1-F3), которые "вероятно" определяют количественное изменение объема продаж (Q)
Дата | Q | F1 | F2 | F3 |
мар.97 | 23 | 22 | 12 | 223 |
апр.97 | 34 | 34 | 2 | 456 |
май.97 | 55 | 45 | 3 | 556 |
июн.97 | 34 | 56 | 67 | 456 |
июл.97 | 22 | 77 | 34 | 567 |
авг.97 | 34 | 99 | 22 | 560 |
сен.97 | 44 | 102 | 33 | 334 |
окт.97 | 45 | 111 | 89 | 456 |
ноя.97 | 56 | 122 | 11 | 678 |
В случае затруднения в выборе факторов рекомендуется выбрать "макро" факторы внешней и внутренней среды для конкретного рынка и конкретной фирмы, например некоторые возможные из них:
"внешние факторы среды маркетинга фирмы"
курс валют;
емкость потребительского сегмента;
суммарные продажи на сегменте;
динамика численности конкурентов;
удовлетворенность сегмента товарами на рынке
"внутренние факторы среды маркетинга фирмы"
наличие товарного запаса;
эффективность работы штата менеджмента фирмы;
затраты на рекламу или тип рекламного сообщения;
изменение способа позиционирования товара;
изменение количества дистрибьютеров товара.
Этап II. Выделение "факторов влияния"
Теперь необходимо разобраться: какие из выбранных факторов ("факторы влияния") действительно оказывают влияние на изменение объема продаж, а какие нужно просто "отбросить" из рассмотрения. Критерием такого соответствия, безусловно, можно считать коэффициент корреляции, который показывает, насколько близки тенденции двух факторов (в данном случае - насколько связано распределение во времени факторов F1-F3, см. рис. 1).
Рис. 1. Динамика исследуемых факторов
В табл. 2 показан расчет коэффициента корреляции между объемом продаж (Q) и факторами (F1, F2, F3). Коэффициент корреляции может быть рассчитан, например, с помощью программного пакета MS Excel, в котором подобный расчет реализуется функцией "CORREL". Из расчета видно, что по коэффициенту корреляции в данном примере "факторами влияния" будут F1 и F3, а фактор F2 можно отбросить из рассмотрения.
Таблица 2 Отбор "факторов влияния" по коэффициенту корреляции
CORR F1 | CORR F2 | CORR F3 | ||
0,462 | -0,057 | 0,458 | ||
Дата | Q | F1 | F2 | F3 |
мар.97 | 23 | 22 | 12 | 223 |
апр.97 | 34 | 34 | 2 | 456 |
май.97 | 55 | 45 | 3 | 556 |
июн.97 | 34 | 56 | 67 | 456 |
июл.97 | 22 | 77 | 34 | 567 |
авг.97 | 34 | 99 | 22 | 560 |
сен.97 | 44 | 102 | 33 | 334 |
окт.97 | 45 | 111 | 89 | 456 |
ноя.97 | 56 | 122 | 11 | 678 |
Этап III. Линейное прогнозирование "факторов влияния"
Теперь в нашем примере мы имеем динамику "факторов влияния" и объема продаж на период с марта 1997 по ноябрь 1997. Соответственно, мы прогнозируем по времени поведение каждого из "факторов влияния" (линейная тенденция для факторов, рассматриваемых в примере представлена в табл. 3). В принципе, в таком предсказании более точный результат будет получен при аппроксимации тенденций факторов и оценки прогнозируемого фактора по аппроксимированной функции. Но и использование линейного предсказания, реализуемого функцией "FORECAST" в пакете MS Excel, также допустимо. Способ реализации функции "FORECAST" представлен в табл. 3.
Таблица 3 Реализация линейного прогнозирования на основе функции "FORECAST" в пакете MS Excel
А | В | |
1 | Дата | F1 |
2 | мар.97 | 22 |
3 | апр.97 | 34 |
4 | май.97 | 45 |
5 | июн.97 | 56 |
6 | июл.97 | 77 |
7 | авг.97 | 99 |
8 | сен.97 | 102 |
9 | окт.97 | 111 |
10 | ноя.97 | 122 |
11 | дек.97 | =FORECAST(A11;B2:B10;A2:A10) |
В табл. 4 представлены спрогнозированные линейным образом значения "факторов влияния" для рассматриваемого примера "предсказания объема продаж в будущем периоде".
Таблица 4 Линейное прогнозирование "факторов влияния" (спрогнозированная линейная тенденция для факторов F1, F2 представлена выделенными курсивом цифрами)
Дата | F1 | F3 |
мар.97 | 22 | 223 |
апр.97 | 34 | 456 |
май.97 | 45 | 556 |
июн.97 | 56 | 456 |
июл.97 | 77 | 567 |
авг.97 | 99 | 560 |
сен.97 | 102 | 334 |
окт.97 | 111 | 456 |
ноя.97 | 122 | 678 |
дек.97 | 140 | 599 |
янв.98 | 153 | 577 |
фев.98 | 166 | 584 |
мар.98 | 177 | 613 |
Этап IV. Прогнозирование продаж по прогнозу "факторов влияния"
Очевидно, что мы не можем прогнозировать продажи, используя только саму тенденцию продаж во времени, это как раз и рассматривалось бы как "прогнозирование фактора по самому фактору". Но у нас имеется тенденция "факторов влияния", которая по своей сущности определяет поведение тенденции продаж (это следует из рассчитанного нами коэффициента корреляции). И именно эта предсказанная тенденция позволяет нам спрогнозировать объем продаж в соответствии с со значениями каждого из факторов. Реализация такого алгоритма на основе функций MS Excel представлена в табл.
Таблица 5 Реализация алгоритма предсказания объема продаж по тенденциям "факторов влияния" на основе функций MS Excel
A | B | C | D | E | F | |
1 | Дата | Q | F1 | Q1 TREND | F3 | Q3 TREND |
2 | мар.97 | 23 | 22 | 223 | ||
: | : | : | : | : | ||
10 | ноя.97 | 56 | 122 | 678 | ||
11 | дек.97 | =(D11+F11)/2 | 139 | =FORECAST(C11;B2:B10;C2:C10) | 598 | =FORECAST(E11;B2:B10;E2:E10) |
Отметим, что предсказанное значение объема продаж получается как среднеарифметическое от суммы предсказанных значений на основе каждого из "факторов влияния". Это позволяет учесть каждый из "факторов влияния" в прогнозе. Результат прогнозирования для нашего примера представлен в табл. 6.