Смекни!
smekni.com

Управление ресурсами предприятия (стр. 1 из 8)

Московский автомобильно-дорожный институт

(Государственный технический университет)

Кафедра "Менеджмент и логистика"

Курсовая работа по дисциплине «Менеджмент»

Тема: "Управление ресурсами"

(расчетно-пояснительная записка)

Вариант № 390(13)

Выполнил: студент группы

Молчанов Д.Н.

МОСКВА 2003

Раздел I. Использование одно-продуктовой модели управления ресурсами при переменном спросе.

Теоретическая часть.

Основные сведения из теоретического курса.

В рассмотренных ранее моделях управления ресурсами спрос на ресурсы (товары, продукты и т.п.) предполагался постоянным в течение всего цикла функционирования (периода планирования).Такой характер спроса имеет место во многих практических ситуациях, в которых приходится организовывать процесс закупок крупно-оптовых партий ресурсов с последующей их поставкой на центральный склад, с которого осуществляются мелкооптовые поставки соответствующим потребителям. Однако, наряду с указанной возникают ситуации, когда спрос на ресурсы существенно отличается от постоянного, т.е. фактически потребление ресурсов происходит неравномерно во времени, с различной интенсивностью. Использование в таких случаях моделей с постоянным спросом неизбежно будет приводить к сбоям процесса товародвижения. Причем, в одних ситуациях сбои будут происходить по причине отсутствия необходимого ресурса в необходимом количестве, а в других - по причине чрезмерных запасов. В итоге, функционирование таких организационно-экономических систем будет связано с повышенными издержками обращения, что эквивалентно потерям определенной величины прибыли и, как следствие, снижению темпов развития. Для устранения этих потерь процесс закупок и поставок необходимо осуществлять в рамках модели управления ресурсами с переменной интенсивностью спроса. Эта модель предполагает, что оценка затрат на хранение осуществляется по максимальному уровню запаса во времени за период Т, а интенсивность спроса (потребления) задана непрерывной детерминированной функцией времени

, определенной на интервале Т=(t0,tn) Оценка затрат на хранение по максимальному уровню запаса ресурса в течение периода Т отражает довольно типичную для практики ситуацию, когда для хранения ресурсов по некоторой номенклатуре на складе выделятся фиксированная в данном периоде площадь (объем), закрепленная за ресурсами этого вида. После установления размера этой площади в данном периоде расходы на хранение данного вида ресурсов являются постоянными, не зависящими от фактического их уровня, который в некоторые моменты может быть меньше, чем размеры выделенной площади. Задача по оптимальному управлению ресурсами в рамках указанной модели сводится к следующему. Требуется определить объемы, количество и моменты поставок партий ресурсов таким образом, чтобы при условии удовлетворения заданного функцией
спроса в объеме суммарной потребности Qт, достигался минимум общих затрат на хранение и восполнение запаса ресурсов. В математических терминах эту задачу можно сформулировать следующим образом

(1)

при условии

где n - число поставок, S - удельные издержки по поставкам, СТ-удельные издержки хранения ресурсов на складе,Vi(ti-1) - объемы поставок, t - моменты поставок. Причем, запись V1(t0) означает, что первая поставка объемом V1 осуществляется в начале интервала Т, т.е. в момент t0 , а V2(t1) означает, что вторая поставка размером V2 осуществляется в следующий момент времени t1 и т.д. Поскольку очередная поставка осуществляется в момент, когда уровень запаса понизится до нуля, то имеет место соотношение

,
(2)

Имеет смысл рассматривать только случай, когда объемы поставок равны между собой, т.к. оптимальная стратегия управления лежит только в этой области. Поэтому будет иметь место выражение

Тогда целевая функция (1) может быть упрощена и представлена в следующем виде

(3)

Проводя дифференцирование и приравнивая к нулю получившееся выражение, можно получить следующую формулу для определения оптимального числа поставок

(4)

Учитывая естественные требования целочисленности значения nопт следует проверить неравенство

(5)

где [nопт] – целая часть значения nопт

Если неравенство выполняется, то в качестве оптимального числа поставок принимается значение

. Если неравенство имеет противоположный смысл, то в качестве оптимального числа поставок принимается значение
. На основе определенного оптимального числа поставок
определяется оптимальный размер поставки, равный

(6)

Для определения оптимальных моментов поставок

используется выражение (2). Процесс вычислений носит итеративный характер и организован следующим образом. На первом шаге вычисляется значение t1опт из соотношения

На втором шаге на основе определенного значения t1опт вычисляется значение t2опт, используя соотношение

Таким образом, в каждом i-том шаге данной итеративной процедуры на основе информации о предыдущем моменте поставки ti-1 вычисляется оптимальный i-тый момент поставки tiопт, используя выражение

Практическая часть

Вариант №13

Исходные данные:

Интервал планирования 270
Функция интенсивности потребления, единица ресурса/день
Удельные издержки хранения, у.е./единица ресурса за интервал функционирования 0,4
Удельные издержки по поставкам, у.е./поставку 170

Общую потребность в некотором виде ресурса за интервал Т определим по формуле

шт.

Удельные издержки хранения СТ =0,4 у.е.ст., а расходы по одной поставке S=170 у.е.ст. Определим все параметры оптимальной стратегии управления закупками и поставками в данном случае и минимум общих издержек обращения. Поскольку интенсивность спроса в данном случае является переменной, то указанные параметры определим в рамках рассмотренной модели управления ресурсами с переменным спросом. Поэтому определим оптимальное число поставок

Для принятия окончательного решения по оптимальному числу поставок проверим выполнение неравенства.

что верно отсюда заключаем, что

=3. На основании формулы (6) определяем оптимальный объем поставок

Далее, определяем оптимальные моменты поставок по формуле (2), используя описанную выше итеративную процедуру. В соответствии с этим, на первом шаге определяем значение t1опт

Отсюда находим, что

На втором шаге определяем значение t2опт, используя выражение

Отсюда получаем, что

На третьем шаге определяем значение t3опт , используя выражение