Смекни!
smekni.com

Технология принятия управленческого решения (стр. 8 из 10)

Широкое распространение в административном аппарате ин­формационных систем может привести к двум серьезным опаснос­тям.

Первая из них связана со стремлением к выражению всех дан­ных в количественном виде, с сбору любой количественной ин­формации. Эту опасность можно заметить на примере США, где в ЭВМ вводится множество так называемых числовых индикаторов, на базе которых и строятся псевдообъективные модели. Однако громадный объем неподдающихся анализу данных ничем не улучшает процесс принятия решений. И.Гус приводит пример работы транс­портной комиссии в Калифорнии, для нужд которой была создана информационная система на современных ЭВМ, включающая огромное количество данных (1100 магнитных лент!). В итоге работы комиссии транспортные проблемы не получили надлежащего реше­ния. Руководителя обычно захлестывает поток информации, и он, как говорит Р.Хилсмен, "не в состоянии даже прочесть ее, не говоря уже о ее разумной использовании".

Вторая опасность состоит в том, что наличие "передового средства управления" в ряде случаев может позволить сотрудни­кам административного аппарата не проводить основной работы по улучшению методов подготовки принимаемых решений. Наличие или отсутствие ЭВМ может оказаться дезориентирующим критерием качества управления.

Итак, информационные системы в их традиционном виде мало что могут дать для решения проблем сложного выбора в уникаль­ных ситуациях. Это естественно, так как каждая из таких проб­лем требует специальных способов получения необходимой ин­формации. Существенная часть этой информации представляет со­бой качественные суждения экспертов. Наряду с этим могут иметь место и количественные данные объективного характера. Если не­обходимая информация получена, ее нужно хранить, особенно если речь идет о сотнях и тысячах альтернатив. Для этих целей сле­дует, конечно, использовать ЭВМ. Но она выступает при этом лишь как большое и удобное устройство для хранения и вспомогательной обработки необходимой информации.

2.6 Математические модели.

После второй мировой войны началась эпоха применения матема­тических моделей для решения самых разнообразных проблем, воз­никающих в человеческой деятельности. Появление и распространение ЭВМ сделало возможным использование математи­ческих моделей для решения экономических задач, начиная от перевозки одного продукта в масштабах района и кончая моде­лированием национальной экономики. Разрабатываются модели городов, рынков, войн, так называемые глобальные модели разви­тия вселенной. Если модель построена и ее создатели верят в ее адекватность, то она используется далее для решения различных задач - прогнозирования, принятия простых и сложных решений. Как правило, применение моделей связано с использованием ЭВМ. Математические модели в настоящее время претендуют на роль универсального средства решения любых проблем.

Мы рассмотрим далее математические модели только с одной точки зрения: их непосредственной применимости для решения проблемы выбора в уникальных ситуациях.

Математические модели издавна использовались физиками для описания основных свойств объективно существующего мира. Моде­ли менялись с углублением знаний о наблюдаемых явлениях, но каждый раз существовало общепринятое средство их проверки ­эксперимент.

У инженеров модели используются при конструировании сложных искусственных объектов. Так, при расчета систем автоматического управления ракетой используются дифференциальные уравнения, описывающие ее поведение. На основе этих уравнений делается расчет, определяющий, каким должен быть регулятор, чтобы дви­жение ракеты было устойчивым, удовлетворяло совокупности за­данных требований, либо было оптимальным по заданным критериям.

Общим в рассматриваемых случаях является взгляд на модель как на способ описания объективно существующих явлений, подда­ющийся проверке при эксперименте. Исследователь уверен в отсутствии "свободы поведения" у описываемых явлений, поскольку они обусловлены законами природы и конструкцией объектов. За­дача исследователя - правильно угадать наиболее подходящую структуру модели.

Несколько иной тип моделей принесло с собой исследование операций. Исследование операций использует общую схему систем­ного подхода. В качестве вспомогательного средства сравнения альтернатив в ней применяются математические модели. В отличии от физических и инженерных моделей в исследовании операций мо­дели описывают поведение систем, включающих в себя во многих случаях коллективы людей. При этом предполагается, что люди ведут себя определенным рациональным образом, который может быть адекватно описан. Критерий сравнения альтернатив (критерий оптимизации) обычно рассматривается как единственный и очевидный. В данном случае модель отражает веру исследовате­ля, что данная ситуация определяет именно это, а не другое по­ведение людей, и что в этом плане описание приближается к объ­ективному. В подобных случаях руководитель с его свободой в принятии решений является неотъемлемой составляющей рассматриваемой ситуации. Исключение его из рассмотрения, попытка рассмотрения ситуации выбора как "объективно существующей" приводит к край­ней ненадежности результатов при использовании математических моделей.

Прежде всего отметим, что упоминавшиеся выше методы иссле­дования операций предназначены для хорошоструктуризованных проблем. Слова "хорошоструктуризованные проблемы" совсем не означают, что эти проблемы легки. Построение математической модели, отражающей основные черты проблемы, часто представляет значительные трудности, не говоря уже о математических методах решения задач исследований операций, которым посвящены много­численные труды.

Большинство неструктуризованных проблем решается эвристи­ческими методами, в которых отсутствует какая-либо упорядочен­ная логическая процедура отыскания решения, а сам метод цели­ком зависит от личности исследователя, решающего задачу. Чаще всего эти методы интуитивных догадок, основанных на прошлом :"не знаю как, но я могу это сделать".

Важнейшая особенность слабоструктуризованных проблем заклю­чается в том, что их модель может быть построена только на ос­новании дополнительной информации, получаемой от человека, участвующего в решении проблемы. При этом исчезает почва для построения беспристрастных объективных моделей. Непонимание этого обстоятельства явилось причиной неудач в применении мно­гих "объективных" математических моделей.

Многие системы, включающие в себя людей очень трудны для изучения. Характеристики и поведение таких систем известно весьма неточно. Социологи и психологи, исследующие эти систе­мы, обычно выдвигают качественные гипотезы об их поведении, которые иногда можно проверить путем специальных обследований.

Так как граница между классами хорошо- и слабоструктуризованных систем не является четкой и однозначной, некоторые исс­ледователи наряду с общей схемой системного подхода использо­вали и "объективные" математические модели. Так появились мо­дели сложных человеческих систем - здравоохранения, воспитания и т.д. Записанные в математическом виде взаимосвязи не стали более объективными, однако, некоторые исследователи искренне верили, что можно построить объективную модель сложных соци­альных систем. Так, известный американский ученый, профессор Дж. Форрестер пишет: "Наши социальные системы несравненно бо­лее сложны и труднопонимаемы, чем технологические. Почему же тогда мы не используем аналогичный подход создания моделей со­циальных систем и проведения лабораторных экспериментов на них перед тем, как опробовать новые законы и программы в жизни?". И далее: "Сейчас имеется возможность конструировать модели со­циальных систем. Конечно, такие модели являются упрощением реальных социальных систем, но они могут быть значительно бо­лее понятными, чем прежние подходы.

Другие ученые не столь категоричны, понимая, что при построении моделей вносятся и субъективные оценки. Но часто модель начинала жить своей жизнью не зависимо от намерений ее создателей, выступая, как нечто, представляющее реальную ситу­ацию. Между тем, многие зависимости в сложных моделях отражают веру групп (иногда многочисленных) людей, что связи между определенными параметрами имеют такой-то (а не иной) вид, что причинно-следственные зависимости выхваченные из реальной жиз­ни, остаются справедливыми и в модели.

В известной модели мировой динамики Дж.Форрестера и Д.Медо­уза используются пять основных переменных: ресурсы, население, уровень жизни, капиталовложения, загрязнение среды. На основе построенной модели делаются выводы о кризисных ситуациях, ко­торые ожидают мир в конце нашего века. Работы Дж.Форрестера и Д.Медоуза важны тем, что привлекали общественное внимание к опасным процессам, происходящим в окружающем нас мире и взаи­мозависимости этих процессов. Но методология, на базе которой были проведены эти исследования, имеет серьезные дефекты и не раз подвергалась критике, основанной главным образом на том, что в настоящее время мы не располагаем информацией, необходи­мой для построения сколько-либо надежных и объективных моде­лей. Подвергаются сомнению даже основные причинно-следственные связи. Так, согласно данным одного исследования, в ближайшие годы изменения в технологии, вкусах потребителей, международ­ных отношениях будут играть большую роль в истощении ресурсов и загрязнении среды, чем рост населения.