3.4. Обработка парных сравнений объектов
При решении задачи оценки большого числа объектов (ранжирование, определение относительных весов, балльная оценка) возникают трудности психологического характера, обусловленные восприятием экспертами множества свойств объектов. Эксперты сравнительно легко решают задачу парного сравнения объектов. Возникает вопрос, каким образом получить оценку всей совокупности объектов на основе результатов парного сравнения, не накладывая условия транзитивности? Рассмотрим алгоритм решения этой задачи. Пусть m экспертов производят оценку всех пар объектов, давая числовую оценку [12]
Если при оценке пары
Общее количество экспертов равно сумме
Определяя отсюда
Очевидно, что
Введем вектор коэффициентов относительной важности объектов порядкаt следующей формулой [12]:
где
Коэффициенты относительной важности первого порядка есть относительные суммы элементов строк матрицы X. Действительно, полагая t=1, из (5.40) получаем [12]
Коэффициенты относительной важности второго порядка (t=2} есть относительные суммы элементов строк матрицы X2 [12].
Если матрица Х неотрицательна и неразложима, то при увеличении порядка
а вектор коэффициентов относительной важности объектов стремится к собственному вектору матрицы X, соответствующему максимальному собственному числу
Определение собственных чисел и собственных векторов матрицы производится решением алгебраического уравнения [12]
где Е—единичная матрица, и системы линейных уравнений [12]
гдеk – собственный вектор матрицы X, соответствующий максимальному собственному числу
С практической точки зрения вычисление коэффициентов относительной важности объектов проще производить последовательной процедурой по формуле (5.40) при t=1, 2, … Как показывает опыт, 3-4 последовательных вычислений достаточно, чтобы получить значения
Матрица
где
При 1=n матрица Х неразложима, т. е. существует только одно доминирующее множество, совпадающее с исходным множеством объектов. Разложимость матрицы Х означает, что среди экспертов имеются большие разногласия в оценке объектов.
Если матрица Х неразложима, то вычисление коэффициентов относительной важности
из которой следует
Если матрица Х является разложимой, то определить коэффициенты относительной важности можно только для каждого множества
Таким образом, если матрица Х неразложима, то по результатам парного сравнения объектов возможно какизмерение предпочтительности объектов в шкале отношений, так и в шкале порядка (ранжирование). Если же матрица Х разложима, то возможно только ранжирование объектов.
Следует отметить, что отношение предпочтения