Смекни!
smekni.com

Метод экспертных оценок (стр. 10 из 11)

3.5. Определение взаимосвязи ранжировок

При обработке результатов ранжирования могут возник­нуть задачи определения зависимости между ранжиров­ками двух экспертов, связи между достижением двух различных целей при решении одной и той же совокуп­ности проблем или взаимосвязи между двумя призна­ками.

В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок или целей будет яв­ляться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена и Кендалла.

Коэффициент ранговой корреляции Спирмена опре­деляется формулой [12]:

(5.50)

где

- взаимный корреляционный момент первой и второй ранжировок,
- дисперсии этих ранжиро­вок. По данным двум ранжировкам оценки взаимного корреляционного момента и дисперсии вычисляются по формулам [12]:

(5.51)

(5.52)

где n – число ранжируемых объектов,

- ранги в первой и второй ранжировках соответственно,
- средние ранги в первой и второй ранжировках. Оценки средних рангов определяются формулами [12]:

(5.53)

Вычислим оценки средних рангов и дисперсий в пред­положении, что в ранжировках отсутствуют связанные ранги, т. е. обе ранжировки дают строгое упорядочение объектов. В этом случае средние ранги (5.53) представ­ляют собой суммы натуральных чисел от единицы доn, поделенные на n. Следовательно, средние ранги для обе­их ранжировок одинаковы и равны [12]

(5.54)

При вычислении оценок дисперсий заметим, что если раскрыть круглые скобки в формулах (5.52), то под зна­ком сумм будут находиться натуральные числа и их квадраты. Две ранжировки могут отличаться друг от друга только перестановкой рангов, но сумма натураль­ных чисел и их квадратов не зависит от порядка (пере­становки) слагаемых. Следовательно, дисперсии (5.52) для двух любых ранжировок (при отсутствии связанных рангов) будут одинаковы и равны [12]

(i=1,2). (5.55)

Подставляя значение

из (5.51) и
из (5.55) в формулу (5.50), получим оценку коэффициента ранго­вой корреляции Спирмена [12]

(5.56)

Для проведения практических расчетов удобнее поль­зоваться другой формулой для коэффициента корреля­ции Спирмена. Ее можно получить из (5.56), если вос­пользоваться тождеством [12]

(5.57)

В равенстве (5.57) первые две суммы в правой части, как это следует из выражения (5.55), одинаковы и рав­ны [12]

(5.58)

Подставляя в формулу (5.56) значение суммы из (5.57) и используя равенство (5.58), получаем следу­ющую удобную для расчетов формулу коэффициента ранговой корреляции Спирмена [12]:

(5.59)

Коэффициент корреляции Спирмена изменяется от –1 до +1. Равенство единице достигается, как это сле­дует из формулы (5.59), при одинаковых ранжировках, т. е. когда

Значение
имеет место при про­тивоположных ранжировках (прямая и обратная ран­жировки). При равенстве коэффициента корреляции ну­лю ранжировки считаются линейно независимыми.

Оценка коэффициента корреляции, вычисляемая по формуле (5.59), является случайной величиной. Для определения значимости этой оценки необходимо задать­ся величиной вероятности

, принять решение о значи­мости коэффициента корреляции и определить значение порога
по приближенной формуле [12]

(5.60)

где n – количество объектов,

- функция, обратная функции [12]

для которой имеются таблицы [7]. После вычисления порогового значения оценка коэффициента корреляции считается значимой, если

.

Для определения значимости оценки коэффициента Спирмена можно воспользоваться критерием Стьюдента, поскольку величина [12]

(5.61)

приближенно распределена по закону Стьюдента с n – 2 степенями свободы.

Если в ранжировках имеются связанные ранги, то коэффициент Спирмена вычисляется по следующей фор­муле [12]:

(5.62)

где

- оценка коэффициента ранговой корреляции Спирмена, вычисляемая по формуле (5.59), а величины
равны [12]

(5.63)

В этих формулах

и
- количество различных связан­ных рангов в первой и второй ранжировках соответст­венно.

Коэффициент ранговой корреляции Кендалла при от­сутствии связанных рангов определяется формулой [12]:

гдеn – количество объектов,

- ранги объектов, signx – функция, равная [12]

sign

Сравнительная оценка коэффициентов ранговой кор­реляции Спирмена и Кендалла показывает, что вычис­ление коэффициентов Спирмена производится по более простой формуле. Кроме того, коэффициент Спирмена дает более точный результат, поскольку он является оп­тимальной по критерию минимума средней квадрата ошибки оценкой коэффициента корреляции.

Отсюда следует, что при практических расчетах кор­реляционной зависимости ранжировок предпочтитель­нее использовать коэффициент ранговой корреляции Спирмена.


ЗАКЛЮЧЕНИЕ

Динамизм и новизна современных народнохозяйственных задач, возможность возникновения разнообразных факторов, влияющих на эффективность решений, требуют, чтобы эти решения принимались быстро и в то же время были хорошо обоснованы. Опыт, интуиция, чувство перспективы в сочетании с информацией помогают специалистам точнее выбирать наиболее важные цели и направления развития, находить наилучшие варианты решения сложных научно-технических и социально-экономических задач в условиях, когда нет информации о решении аналогичных проблем в прошлом.

Использование метода экспертных оценок помогает формализовать процедуры сбора, обобщения и анализа мнений специалистов с целью преобразования их в форму, наиболее удобную для принятия обоснованного решения.

Но, следует заметить, что метод экспертных оценок не может заменить ни административных, ни плановых решений, он лишь позволяет пополнить информацию, необходимую для подготовки и принятия таких решений. Широкое использование экспертных оценок правомерно только там, где для анализа будущего невозможно применить более точные методы.

Экспертные методы непрерывно развиваются и совершенствуются. Основные направления этого развития определяются рядом факторов, в числе которых можно указать на стремление расширить области применения, повысить степень использования математических методов и электронно-вычислительной техники, а также изыскать пути устранения выявляющихся недостатков.