Наиболее общими приемами выравнивания являются логарифмирование и замена переменных.
В случае если эмпирическая формула предполагается содержащей три параметра либо известно, что функция трехпараметрическая, иногда удается путем некоторых преобразований исключить один из параметров, а оставшиеся два привести к одной из формул выравнивания.
Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредственного приближенного определения параметров функции, аппроксимирующей исходный числовой ряд. Зачастую именно так и используется этот метод в некоторых экстраполяционных прогнозах. Отметим, что возможность непосредственного его использования для определения параметров аппроксимирующей функции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.
В том случае, если вид функции нам неизвестен, выравнивание следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и приемов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.
Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результаты их подготавливают и облегчают процесс выбора аппроксимирующей функции в задачах прогностической экстраполяции. В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:
1) Первая производная, или абсолютная дифференциальная функция роста.
2) Относительный дифференциальный коэффициент, или логарифмическая производная,
3) Эластичность функции
2.3 Статистические методы
Прежде чем приступить к анализу статистических методов прогнозирования, рассмотрим некоторые общие понятия и определения, относящиеся к корреляционным и регрессионным моделям. Две случайные величины являются корреляционно связанными, если математическое ожидание одной из них меняется в зависимости от изменения другой.
Применение корреляционного анализа предполагает выполнение следующих предпосылок:
а) Случайные величины y(y1, у2, ..., Уn) и x(x1, x2, ..., Хn) могут рассматриваться как выборка из двумерной генеральной совокупности с нормальным законом распределения.
б) Ожидаемая величина погрешности и равна нулю
в) Отдельные наблюдения стахостически независимы, т. е. значение данного наблюдения не должно зависеть от значения предыдущего и последующего наблюдений.
г) Ковариация между ошибкой, связанной с одним значением зависимой переменной у, и ошибкой, связанной с любым другим значением y , равна нулю.
д) Дисперсия ошибки, связанная с одним значением у, равна дисперсии ошибки, связанной с любым другим значением .
е) Ковариация между погрешностью и каждой из независимых переменных равна нулю.
ж) Непосредственная применимость этого метода ограничивается случаями, когда уравнение кривой является линейным относительно своих параметров bo, bi, ...,bk Это, однако, не означает, что само уравнение кривой относительно переменных должно быть линейным. Если эмпирические уравнения наблюдений не являются линейными, то во многих случаях оказывается возможным привести их к линейной форме и уже. после этого применять метод наименьших квадратов.
з) Наблюдения независимых переменных производятся без погрешности.
Перед началом корреляционного анализа необходимо проверить выполнение этих предпосылок.
Связь между случайной и неслучайной величинами называется регрессионной, а метод анализа таких связей — регрессионным анализом. Применение регрессионного анализа предполагает обязательное выполнение предпосылок (б-г) корреляционного анализа. Только при выполнении приведенных предпосылок оценки коэффициентов корреляции и регрессии, получаемые с помощью способа наименьших квадратов, будут несмещенными и иметь минимальную дисперсию.
Регрессионный анализ тесно связан с корреляционным. При выполнении предпосылок корреляционного анализа выполняются предпосылки регрессионного анализа. В то же время регрессионный анализ предъявляет менее жесткие требования к исходной информации.» Так, например, проведение регрессионного анализа возможно даже в случае отличия распределения случайной величины от нормального, как это часто бывает для технико-экономических величин. В качестве зависимой переменной в регрессионном анализе используется случайная переменная, а в качестве независимой — неслучайная переменная.
По степени комплексности статистические исследования можно разделить на двумерные и многомерные. Первые касаются рассмотрения парных взаимосвязей между переменными (парные корреляции и регрессии) и направлены в прогнозных исследованиях на решение таких задач, как установление количественной меры тесноты связи между двумя случайными величинами, установление близости этой связи к линейной, оценки достоверности и точности прогнозов, полученных экстраполяцией регрессионной зависимости. Многомерные методы статистического - анализа направлены в основном на решение задачи системного анализа многомерных стохастических объектов прогнозирования. Целью такого анализа является, как правило, выяснение внутренних взаимосвязей между переменными комплекса, построение многомерных функций связи переменных, выделение минимального числа характеристик, описывающих объект с достаточной степенью точности. Одной из основных задач здесь является сокращение размерности описания объекта прогнозирования.
Таким образом, статистические методы используются в основном для подготовки данных, приведения их к виду, пригодному для производства прогноза. Как правило, после их применения используется один из методов экстраполяции или интерполяции для получения непосредственно прогнозного результата.
2.4 Экспертные методы
2.4.1 Область применения экспертных методов
Методы экспертных оценок в прогнозировании и перспективном планировании научно-технического прогресса применяются в следующих случаях:
а) в условиях отсутствия достаточно представительной и достоверной статистики характеристики объекта (например, лазеры, голографические запоминающие устройства, рациональное использование водных ресурсов на предприятиях);
б) в условиях большой неопределенности среды функционирования объекта (например, прогнозов человеко-машинной системы в космосе или учет взаимовлияния областей науки и техники);
в) при средне- и долгосрочном прогнозировании объектов новых отраслей промышленности, подверженных сильному влиянию новых открытий в фундаментальных науках (например, микробиологическая промышленность, квантовая электроника, атомное машиностроение);
г) в условиях дефицита времени или экстремальных ситуациях.
Экспертная оценка необходима, когда нет надлежащей теоретической основы развития объекта. Степень достоверности экспертизы устанавливается по абсолютной частоте, с которой оценка эксперта в конечном итоге подтверждается последующими событиями. Существует две категории экспертов - это узкие специалисты и специалисты широкого профиля, обеспечивающие формулирование крупных проблем и построение моделей. Выбор экспертов для прогноза производится на основе их репутации среди определенной категории специалистов. Однако не следует забывать и того обстоятельства, что первоклассный специалист не всегда может достаточно квалифицированно рассмотреть и понять общие, глобальные, вопросы. Для этой цели нужно привлекать экспертов хотя и недостаточно узко информированных, но обладающих способностью к дерзанию и воображению.
«Эксперт» в дословном переводе с латинского языка означает «опытный». Поэтому и в формализованном, и в неформализованном способах определения эксперта значительное место занимают профессиональный опыт и развитая на его основе интуиция. Условия необходимости и достаточности отнесения специалиста к категории экспертов вводятся следующим образом.
Важно установить не абсолютную степень надежности экспертной оценки, а степень надежности по сравнению с оценкой среднего специалиста, а также корреляцию между вероятностью его прогнозной оценки и надежностью класса тех гипотез, которыми оперирует эксперт. В общем, нужно определить, что такое эксперт. Перечислим некоторые требования, которым должен удовлетворять эксперт:
1) оценки эксперта должны быть стабильны во времени и транзи-тивны; 2) наличие дополнительной информации о прогнозируемых признаках лишь улучшает оценку эксперта; 3) эксперт должен быть признанным специалистом в данной области знаний; 4) эксперт должен обладать некоторым опытом успешных прогнозов в данной области знаний.
Характеризуя экспертов, следует иметь в виду, что в результате выработки оценок могут иметь место ошибки двух видов. Ошибки первого вида известны в технике измерений как систематические, ошибки второго вида — как случайные. Эксперт, склонный к ошибкам первого вида, выдает значения, которые устойчиво отличаются от истинного в сторону увеличения или уменьшения. Полагают, что ошибки этого вида связаны со складом ума экспертов. Для коррекции систематических ошибок можно применять поправочные коэффициенты или же использовать специально разработанные тренировочные игры. Ошибки второго вида характеризуются величиной дисперсии. Исходя из анализа основных видов ошибок при вынесении экспертных суждений, можно добавить к рассмотренному ранее перечню требований к экспертам еще одно. Смысл его состоит в том, что следует предпочесть эксперта, оценки которого имеют малую дисперсию и систематическое отклонение средней ошибки от нуля, эксперту со средней ошибкой, равной нулю, но с большей дисперсией. К сожалению, априори определить способность человека делать правильные экспертные оценки невозможно. Важным средством подготовки экспертов являются специальные тренировочные игры.