Точность исследования возрастает, если снять с исследуемого одежду, а из помещения удалить объекты, более теплые или более холодные, чем воздух в комнате. Оптимальной для исследования считается температура воздуха 22 градуса.
Перед проведением тепловизионного исследования больной должен адаптироваться к температуре окружающей среды. По мнению В.Ф. Сухарева и В.М. Курышевой, оптимальным и достаточным является 20-минутный период адаптации. Эти авторы выделили три типа адаптации у людей:
Первый—устойчивый. Характеризуется высокой степенью адаптации. У людей, относящихся к этой группе, вначале отмечается небольшое падение температуры на 0.3-0.5 С при естественном охлаждении и быстрое восстановление температуры кожи до первоначального уровня.
Второй—уравновешенный. Степень адаптации при этом несколько понижена и наблюдается замедленное восстановление температуры кожи.
Третий—неустойчивый. В этом случае имеют место нарушения физической терморегуляции или функциональные расстройства сосудистой системы без клинических проявлений. Температура несколько стабилизируется к 40-60-й минуте периода адаптации, оставаясь пониженной.
У больных с патологией сосудов отмечаются резкие нарушения адаптационных процессов.
Выбор расстояния от больного до экрана тепловизора зависит от технических возможностей прибора.
Оптимальное расстояние от тепловизора до объекта составляет 2-4 метра.
В литературе описывается несколько методов тепловизионных исследований. Выделяют два основных вида термографии:
1.Контактная холестерическая термография.
2.Телетермография.
Телетермография основана на преобразовании инфракрасного излучения тела человека в электрический сигнал, который визуализируется на экране тепловизора.
Контактная холестерическая термография опирается на оптические свойства холестерических жидких кристаллов, которые проявляются изменением окраски в радужные цвета при нанесении их на термоизлучающие поверхности. Наиболее холодным участкам соответствует красный цвет, наиболее горячим—синий. Нанесенные на кожу композиции жидких кристаллов, обладая термочувствительностью в пределах 0.001 С, реагируют на тепловой поток путем перестройки молекулярной структуры. Падающий на кристаллы рассеянный дневной свет разделяется на две компоненты, у одной из которых электрический вектор поворачивается по часовой стрелке, а другой—против.
После рассмотрения различных методов тепловидения встает вопрос о способах интерпретации термографического изображения. Существуют визуальный и количественный способы оценки тепловизионной картины.
Визуальная (качественная) оценка термографии позволяет определить расположение, размеры, форму и структуру очагов повышенного излучения, а также ориентировочно оценивать величину инфракрасной радиации. Однако при визуальной оценке невозможно точное измерение температуры. Кроме того, сам подъем кажущейся температуры в термографе оказывается зависимым от скорости развертки и величины поля. Затруднения для клинической оценки результатов термографии заключаются в том, что подъем температуры на небольшом по площади участке оказывается малозаметным. В результате небольшой по размерам патологический очаг может не обнаруживаться.
Радиометрический подход весьма перспективен. Он предполагает использование самой современной техники и может найти применение для проведения массового профилактического обследования, получения количественной информации о патологических процессах в исследуемых участках, а также для оценки эффективности—термографии.
Успехи медицинской науки во многом зависят от качества используемой медицинской аппаратуры. Тепловизоры, применяемые сейчас в тепловизионной диагностике, представляют собой сканирующие устройства, состоящие из систем зеркал, фокусирующих инфракрасное излучение от поверхности тела на чувствительный приемник. Такой приемник требует охлаждения, которое обеспечивает высокую чувствительность. В приборе тепловое излучение последовательно преобразуется в электрический сигнал, усиливающийся и регистрирующийся как полутоновое изображение.
В настоящее время применяются тепловизоры с оптико-механическим сканированием, в которых за счет пространственной развертки изображения осуществляется последовательное преобразование инфракрасного излучения в видимое.
В термовизионной аппаратуре видимое изображение высвечивается на экране ЭЛТ поэлементно, т.е. кадр изображения формируется, как в телевидении, путем перемещения луча по горизонтали и вертикали. Получение поэлементной развертки обеспечивает оптико-механическое сканирование. В результате на выходе преобразователя формируется видеосигнал, подобный телевизионному. Поскольку спектральный состав части излучения, которая вызывает сигнал на выходе преобразователя, определяется областью пропускания оптической
системы и спектральной характеристикой преобразователя, термовизионная аппаратура имеет более широкую область спектральной чувствительности, чем та, которая построена на базе электронно-оптического преобразователя.
Упрощенная функциональная схема термовизора приведена на рисунке