Смекни!
smekni.com

по Биохимии (стр. 4 из 5)

Молочная кислота — сильная кислота, образующая при диссоциации значительное количество водородных ионов. Часть их может быть связана буферными системами клеток и крови, при этом в крови главную роль иг­рает бикарбонатный, а в клетках — белковый буфер. Когда емкость буфер­ных систем исчерпывается, происходит сдвиг активной среды в кислую сторону. В закислении среды участвуют и такие кислоты, как угольная фосфорная, пировиноградная и др. Однако роль молочной кислоты в этог.' процессе наиболее значительна. Между концентрацией молочной кислоть и величиной рН крови существует выраженная обратно пропорциональная зависимость. Как видно из рис. 147, максимальное значение концентрации молочной кислоты в крови в условиях напряженной мышечной деятельнос­ти достигает 20—25 ммоль ■ л'1 и более, а значение рН снижается от 7,4 в состоянии покоя до 6,9—6,8.

Снижение величины рН более чем на 0,2 по сравнению с уровнем по­коя вызывает уменьшение активности многих ферментов, и в первую очередь фосфофруктокиназы, контролирующей ключевую реакцию глико-

Рис. 147

Взаимосвязь между
изменениями
значения рН
и концентрации
лактата в крови при
напряженной
мышечной работе

лиза, поэтому общая скорость гликолиза снижается. Закисление среды
организма приводит также к нарушению деятельности нервных клеток и
развитию в них охранительного торможения, ухудшению передачи возбуж-
дения с нерва на мышцу, снижению АТФ-азной активности миозина и па-
дению скорости расщепления АТФ. Высокая концентрация молочной кис-
лоты в мышечных волокнах вызывает повышение в них осмотического дав-
ления, ведущего к набуханию их, сдавливанию нервных окончаний, в ре-
зультате чего могут возникать боли в мышцах. Многие спортсмены могут
вынести снижение рН крови до 6,8 и даже 6,5 (при изнеможении), однако
при этом наблюдаются тошнота, головокружение и сильные боли в мыш-
цах. Сдвиг величины рН крови в щелочную сторону возможен до 7,6, что
организм переносит без резких нарушений обменных процессов.

Избыток молочной кислоты в крови связывается бикарбонатным буфе-
ром, в частности его щелочным компонентом (ЫаНС03):

+ НСОз + СНОНСОО" + Н+-------- + СНзСНОНСОО" + НгСОз

XX

со2 + н2о

В результате такого взаимодействия образуется так называемый из-
быток неметаболической углекислоты, которая не связана с процессами
биологического окисления. Она быстро распадается на С02 и Н20. Опре-
деляя долю неметаболического С02 в выдыхаемом воздухе, можно доста-
точно точно оценить степень усиления гликолитического процесса в рабо-
тающих мышцах.

Существует определенное соотношение между количеством выделен-
ного углекислого газа (УС02) и потребляемого кислорода (1/02), что назы-
вают дыхательным коэффициентом (ДК = 1/С02 / У02), который зависит от природы окисляемого энергетического субстрата. При окислении углево­дов дыхательный коэффициент равен 1,0 (6С02 / 602 = 1,0), при окислении жиров — 0,70, при окислении белков — 0,80, а при сбалансированной бел- ково-углеводно-жировой диете — около 0,75. Таким образом, по величине дыхательного коэффициента можно судить о характере окисляемых ве­ществ и протекании окислительного процесса. Однако при напряженной мышечной работе дыхательный коэффициент может быть выше 1, что свя­зано с появлением избытка молочной кислоты, увеличивающей образова­ние и выделение С02.

Мышечная работа вызывает изменение содержания в крови белков и продуктов их распада. Отмечается увеличение содержания белков в плаз­ме крови (в частности, белков-ферментов) за счет их выхода из работаю­щих мышц, а также изменяется соотношение между различными белками крови, увеличивается количество продуктов белкового распада — амино­кислот, поступающих из мышечных клеток и печени, аммиака, мочевины. Изменения белкового обмена зависят от длительности работы. Так, при кратковременной работе выход белков из тканей в кровь незначителен, а при длительной работе, когда проницаемость клеточных мембран сильно изменяется, белок может проникать через клеточные мембраны почек и появляться в моче. Уровень аммиака особенно возрастает в случае, когда не устанавливается устойчивое состояние метаболизма, а также при дли­тельной утомительной мышечной нагрузке. Длительная работа приводит также к увеличению содержания в крови мочевины.

4) Показать значение экспресс-методов биохимическом контроле в оценке функционального состояния спортсмена

Немаловажное значение в биохимическом обследовании имеют используемые методы определения показателей метаболизма, их точность и достоверность.

В настоящее время в практике спорта широко применяются лабораторные экспресс-методы определения многих (около 60) различных биохимических

показателей в плазме крови с использованием портативного прибора

швейцарской фирмы «Доктор Ланге» или других фирм. К экспресс-методам определения функционального состояния спортсменов относится также предложенный академиком В.Г. Шахба-зовым новый метод определения

энергетического состояния человека, в основу которого положены изменения

биоэлектрических свойств ядер эпителиальных клеток в зависимости от

физиологического состояния организма. Данный метод позволяет выявить нарушение гомеостаза организма, состояние утомления и другие изменения при мышечной деятельности.

Контроль за функциональным состоянием организма в условиях учебно-

тренировочного сбора можно осуществлять с помощью специальных

диагностических экспресс-наборов для биохимического анализа мочи и крови.

Основаны они на способности определенного вещества (глюкозы, белка,

витамина С, кетоновых тел, мочевины, гемоглобина, нитратов и др.)

реагировать с нанесенными на индикаторную полоску реактивами и изменять

окраску. Обычно наносится капля исследуемой мочи на индикаторную полоску

«Глюкотеста», «Пентафана», «Меди-теста» или других диагностических тестов

и через 1 мин ее окраска сравнивается с индикаторной шкалой, прилагаемой

к набору.

Одни и те же биохимические методы и показатели могут быть использованы

для решения различных задач. Так, например, определение содержания

лактата в крови используется при оценке уровня тренированности,

направленности и эффективности применяемого упражнения, а также при

отборе лиц для занятий отдельными видами спорта.

В зависимости от решаемых задач изменяются условия проведения

биохимических исследований. Поскольку многие биохимические показатели у

тренированного и не тренированного организма в состоянии относительного

покоя существенно не различаются, для выявления их особенностей проводят

обследование в состоянии покоя утром натощак (физиологическая норма), в

динамике физической нагрузки либо сразу после нее, а также в разные

При обследовании спортсменов применяются различные типы тестирующих

физических нагрузок, которые могут быть стандартными и максимальными

(предельными).

5. Дать биохимическую характеристику заллинга

Заллинг – это подвид спортивного туризма (дист. - пешеходные), проводящийся исключительно в закрытых помещениях, подписанный отдельным документом Росспорта.

Эти дистанции находятся примерно в таком промежуточном интервале 1,5-4 мин. Анаэробный процесс.

Гликоген

Глюкоза Креатин

К анаэробным механизмам относятся:

• креатинфосфокиназный (фосфогенный или алактатный) механизм, обеспечивающий ресинтез АТФ за счет перефосфорилирования между креатинфосфатом и АДФ;

• гликолитический (лактатный) механизм, обеспечивающий ресинтез АТФ в процессе ферментативного анаэробного расщепления гликогена мышц или глюкозы крови, заканчивающегося образованием молочной кис­лоты, поэтому и называется лактатным;

• миокиназный механизм, осуществляющий ресинтез АТФ за счет ре­акции перефосфорилирования между двумя молекулами АДФ с участием фермента миокиназы (аденилаткиназы).

Анаэробные механизмы являются основными в энергообеспечении кратковременных упражнений высокой интенсивности, а аэробные — при длительной работе умеренной интенсивности.

Преобладают гликолитический механизм ресинтеза АТФ.

Энергетическое обеспечение работы в зоне субмаксимальной мощ­ности осуществляется в основном за счет анаэробного гликолиза, что приводит к большому накоплению молочной кислоты в крови (концентра­ция ее может достигать 2,5 г ■ л1 и более). Кислородный запрос при такой работе может достигать 20—40 л, а уровень энергетических затрат может в 4—5 раз превышать максимум аэробного механизма энергообра­зования. К концу работы возрастает доля аэробных реакций в ее энерго­обеспечении. Кислородный долг в этой зоне мощности наиболее значите­лен по абсолютным значениям (до 20 л) и составляет 50—90 % кислород­ного запроса. Усиливается мобилизация гликогена печени, уровень глюко­зы в крови может достигать 2 г • л"1. Под влиянием продуктов анаэробного распада увеличивается проницаемость клеточных мембран для белков, что приводит к увеличению их содержания в крови и появлению в моче, где их концентрация достигает 1,5 %.