Смекни!
smekni.com

Лекции по биохимии (стр. 17 из 26)

Mn, Co, Cu, Mo, Zn, F, Br, I.

8. В каком виде присутствуют в живых организмах минеральные вещества?

Все минеральные вещества принято делить на макроэлементы - вещества, присутствующие в организме человека в относительна большом количестве, и микроэлементы - вещества, доля которых в организме микроскопически мала.

К макроэлементам относятся кальций (Са), калий (К), магний (Мg), натрий (N), сера (S), фосфор (Р) и хлор (Сl).

Из микроэлементов наибольшее значение в питании имеют; железо (Fе), медь (Сu), марганец (Мn), йод (I), цинк (Zn), фтор (F), хром (Сг), молибден (Мо), кобальт (Со), ванадий (V), никель (Ni), кремний (Si), селен (Sе), стронций (Sr). бор (В).

9. Какие катионы в клетках и внеклеточных жидкостях организма человека являются основными? Перечислите их основные функции.

Основными катионами в клетках и внеклеточных жидкостях организма человека являются: Ка+, К+, Са2+, М2+, 2п2+, Ре2+.

Биологические функции катионов

Структурообразующая: обусловлена комплексообразующими свойствами металлов, катионы которых участвуют в образовании функционально активных структур макромолекул и надмолекулярных комплексов (гем, хлорофилл, белки, нуклеиновые кислоты и т.д.).

Транспортная: катионы в составе металлопротеидов участвуют в переносе электронов или молекул простых веществ. Например, ионы железа и меди входят в цитохромы, которые переносят электроны, а железо в составе гемоглобина связывает и переносит кислород.

Регуляторная: ионы металлов, соединяясь с ферментами, влияют на активность катионов и регулируют (активируют или ингибируют) скорость химических реакций в клетке (Mg2+ активирует ДНК- и РНК-полимеразу, Ca2+ – креатинкиназу, Mg2+, Mn2+ – гексокиназу; ионы Mn2+, Zn2+, Co2+, Ni2+ ускоряют распад и синтез белков, а ионы Ca2+, Mg2+ участвуют в распаде и синтезе липидов и углеводов).

Осмотическая: катионы используются для регуляции осмотического и гидроосмотического давлений в клетке и организме в целом.

Биоэлектрическая: катионы участвуют в возникновении и регуляции величины разности потенциалов на клеточных мембранах в возбудимых клетках (нервных, мышечных) и проведении нервных импульсов.

Синтетическая: связана с использованием неорганических катионов для синтеза сложных молекул, например, Fe3+ – в синтезе гемоглобина, Ca2+ – в синтезе амилазы. Cu2+, Mn2+, Zn2+, Co2+, Ni2+ поддерживают вторичную и третичную структуру ДНК и РНК, Zn2+, участвуют в образовании активного центра 30 ферментов.

10. Приведите пример белков, в которых катионы железа выполняют транспортную функцию.

Гемоглобин, цитохромы.

11. Какую функцию выполняют катионы К+ и Са 2+ в водном обмене?

Они определяют характер физико-химических процессов в тканях.

12. Приведите примеры процессов, в которых образуется эндогенная вода.

В процессе обмена веществ и окисления водорода, входящего в состав субстратов (белков, жиров и углеводов).

13. В образовании активной формы инсулина принимают участие катионы: а) Nа; б) Zn 2+; в) Fе 2+ ; г) Мg 2+ ; д) Сu 2+ .

б.

14. Катионы кобальта входят в состав витамина: а) А; б) С; в) Е; г) В12; д) В6.

г.

15. Основной костной ткани являются соединения а) кальция и фосфора; б) натрия и калия; в) кальция и хлора; г) меди и азота.

а.

16. Перечислите незаменимые аминокислоты.

Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме, в частности, в организме человека. Поэтому их поступление в организм с пищей необходимо.

Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треони́н, триптофан и фенилалани́н;

Для детей незаменимыми также являются аргинин и гистидин.

Энергетический обмен.

1. Укажите основные источники энергии в организме.

Это гликоген, жировые кислоты и аминокислоты.

2. Приведите энергетическую ценность белков, жиров и углеводов.

Пищевое вещество

Энергетическая ценность при окислении организма

кДж/г

ккал/г

Белки

16,74

4,0

Жиры

37,66

9,0

Углеводы

16,74

4,0

3. Каким образом происходит энергетический обмен в тканях и клетках.

4. Перечислите источники быстрого восполнения энергии.

Углеводы.

Тема 7. Биохимия сокращения и расслабления мышц.

Биохимия мышц и мышечного сокращения.

1. Расскажите о химическом составе мышц.

Минимальный структурный элемент всех типов мышц — мышечное волокно, каждое из которых в отдельности является не только клеточной, но и физиологической единицей, способной сокращаться. Это связано со строением такого волокна, содержащего не только органеллы (ядро клетки, митохондрии, рибосомы, комплекс Гольджи), но и специфические элементы, связанные с механизмом сокращения — миофибриллы. В состав последних входят сократительные белки — актин и миозин.

Актин — сократительный белок, состоящий из 375 аминокислотных остатков с молекулярной массой 42300, который составляет около 15 % мышечного белка. Под световым микроскопом более тонкие молекулы актина выглядят светлой полоской (так называемые Ι-диски). В растворах с малым содержанием ионов актин содержится в виде единичных молекул с шарообразной структурой, однако в физиологических условиях, в присутствии АТФ и ионов магния, актин становится полимером и образует длинные волокна (актин фибриллярный), которые состоят из спирально закрученных двух цепочек молекул актина. Соединяясь с другими белками, волокна актина приобретают способность сокращаться, используя энергию, содержащуюся в АТФ.

Миозин — основной мышечный белок; содержание его в мышцах достигает 60 %. Молекулы состоят из двух полипептидных цепочек, в каждой из которых содержится более 2000 аминокислот. Белковая молекула очень велика (это самые длинные полипептидные цепочки, существующие в природе), а её молекулярная масса доходит до 470000. Каждая из полипептидных цепочек оканчивается так называемой головкой, в состав которой входят две небольшие цепочки, состоящие из 150—190 аминокислот. Эти белки проявляют энзиматическую активность АТФазы, необходимую для сокращения актомиозина. Под микроскопом молекулы миозина в мышцах выглядят темной полоской (так называемые А-диски).

Актомиозин — белковый комплекс, состоящий из актина и миозина, характеризующийся энзиматической активностью АТФазы. Это значит, что благодаря энергии, освобожденной в процессе гидролиза АТФ, актомиозин может сокращаться. В физиологических условиях актомиозин создает волокна, находящиеся в определенном порядке. Фибриллярные части молекул миозина, собранные в пучок, образуют так называемую толстую нить, из которой перпендикулярно выглядывают миозиновые головки. Молекулы актина соединяются в длинные цепочки; две таких цепочки, спирально закрученные друг вокруг друга, составляют тонкую нить. Тонкая и толстая нити расположены параллельно таким образом, что каждая тонкая нить окружена тремя толстыми, а каждая толстая нить — шестью тонкими; миозиновые головки цепляются за тонкие нити.