Смекни!
smekni.com

Средства визуализации изображений в компьютерной томографии и цифровых рентгенографических системах (стр. 10 из 11)

Как уже отмечалось выше, в наряду с функцией

рассматривается функция

,

являющаяся интегралом по всей прямой или, что тоже самое, суммой интегралов вдоль лучей из точки S в направлениях a и - a .

Обе функции являются однородными степени -1, то есть для них выполняются равенства

,
.

Отметим также, что

является четной, а функция
таковой не является.

Понятие однородности степени l можно естественным образом расширить на обобщенные функции, если взять за основу равенство g(g x) = g l g(x). В терминах действия на основную функцию j равенство запишется в виде (g, j (x/g ) = g l +n (g, j (x)), здесь g v любое вещественное число большее нуля, n n - размерность пространства, в котором заданы основные функции. В интегральном представлении обобщенных функций показатель n возникает при соответствующей замене переменных в dx.

Известно, что преобразование Фурье однородной обобщенной функции, тоже является однородной обобщенной функцией.

Для интегрируемых, ограниченных и имеющих ограниченный носитель, функций f их лучевое преобразование является регулярной однородной функцией. Из результатов работ следует, что в трехмерном пространстве преобразование Фурье таких функций, понимаемое в обобщенном смысле, задается регулярной функцией. Регулярная однородная функция задается своими значениями на единичной сфере. Таким образом, в практических ситуациях при инвертировании лучевого преобразования нас интересует соотношение между двумя функциями. Одна из них является сужением на единичную сферу лучевого преобразования, а другая - сужением на единичную сферу преобразование Фурье лучевых данных, понимаемого в смысле обобщенных функций. Подобное преобразование между функциями, заданными на единичной сфере естественно назвать преобразованием Семянистого, поскольку в его работе впервые получены подобные соотношения для симметричных однородных функций в n-мерных пространствах. Как уже отмечалось выше, функция

не является симметричной, для нее соответствующие соотношения для функций на единичных сферах в трехмерном пространстве были получены в предыдущих параграфах.

Ранее были рассмотрены формулы обращения лучевого преобразования, основанные на явном использовании обобщенных функций, и приемы, позволяющие приводить эти формулы к виду удобному для построения численных алгоритмов.

К выводу формул обращения лучевого преобразования есть другой подход, не использующий обобщенные функции в явном виде. Мы покажем здесь, что фактически этот метод тоже основан на использовании преобразования Фурье в смысле обобщенных функций.

Лучевыми данными называется функция

,

Ф = (Ф1, Ф2, Ф3) Î R3, b Î S2 (S2 v единичная сфера). (Не трудно видеть, что в наших обозначениях это функция

).

В формулах обращения используются следующие функции:

(2.2.9)

, (2.2.10)

(S2/2 - половина единичной сферы),

- скалярное произведение векторов
и
.

Формулы обращения в имеет вид

, (2.2.11)

где

, R v радиус шара, в котором содержится носитель функции f(х),
-элемент поверхности на единичной сфере.

Если для любого l, такого, что ½l½< R и любого b Î S2/2 существует точка Ф на траектории источника такая, что Ф × b = l (выполняются условия Кириллова-Туя), то формула (2.2.11) может быть использована для определения функции f(х).

В отмечается, что функция F при трехмерной томографической реконструкции в конусе лучей в определенной степени аналогична роли преобразования Фурье в двумерной томографии. Этот факт не является случайным.

Действительно, в показано, преобразование Фурье по b в смысле обобщенных функций от функции g(b , Ф) имеет вид

. (2.2.12)

Знаменатель в (2.2.12) может быть равен нулю, и (2.2.12) следует понимать в смысле обобщенных функций. В доказано следующее утверждение.

Если f j Î C2, то

. (2.2.13)

Учитывая (2.2.13), (2.2.12) и (2.2.10) мы видим, что функция

, является преобразованием Фурье в смысле обобщенных функций функции g(b , F ), а функция F в формуле обращения определяется функцией
.

4.4. Соотношения между преобразованиями Радона, Фурье и лучевым преобразованием.

В предыдущих параграфах были рассмотрены формулы непосредственного обращения лучевого преобразования. Существуют также методы томографической реконструкции, основанные на предварительном вычислении преобразования Фурье искомой функции или ее преобразования Радона. Как уже отмечалось ранее, в случае двух переменных лучевое преобразование и преобразование Радона совпадают. В трехмерном пространстве v это разные преобразования.

Для понимания сути методов томографии весьма полезны соотношения между различными видами преобразований. Многие такие соотношения можно получить в пространствах любой размерности. Однако здесь мы будем, как правило, рассматривать практически важные случаи двух и трех переменных.

Соотношение между преобразованиями Радона и Фурье.

Пусть

- преобразование Фурье функции f(x1, x2, x3):

.

Интегрируя сначала при фиксированном p по плоскости l 1x1 + l 2x2 + l 3x3 = p, а затем по p приходим к хорошо известному выражению, связывающему преобразования Фурье и Радона

. (2.3.1)

Соотношение между преобразованием Радона и преобразованием Фурье лучевых данных.

В [21] предложен способ инвертирования лучевого преобразования, основанный на том, что по исходным данным восстанавливается преобразование Радона функции f(x)

,

что позволяет по известным формулам восстановить f(x).

При выводе формул обращения в работе используется функция

. (2.3.2)

Можно показать что для функций

и
справедливо соотношение

, (2.3.3)

здесь С v некоторая константа. Равенства (2.3.2) и (2.3.3) дают связь между преобразованием Радона и лучевым преобразованием в трехмерном пространстве:

, (2.3.4)

Отметим также, что поскольку

,
. Равенство (2.3.4) может быть записано в виде
. Из последнего равенства и определения функции
следует, что
функция x постоянна на плоскостях, ортогональных вектору x , так как для всех x, принадлежащих такой плоскости, скалярное произведение (x, x ) равно константе. Этот факт лежит в основе многих методов обращения лучевого преобразования. Это утверждение получено в [40], для случая комплексных пространств. Для действительных пространств это утверждение содержится в работах. Оно и может быть использовано для восстановления функции
в точках x, принадлежащих области D, по значениям на ее границах.