Смекни!
smekni.com

Гетеросуггестивная психомышечная релаксация при ишемическом заболевании сердца (стр. 4 из 10)

Гипоталамус секретирует фактор, который стимулирует секрецию ACTH передней долей гипофиза, который, в свою очередь, стимулирует корковое вещество надпочечников, чтобы секретировать большое количество глюкокортикоидных гормонов. Как и в случае адреналина и норадреналина, секреция кортизола - маркер того, что субъект испытывает стресс.

1.6 Нейроэндокринный ответ на стресс

Ответ на стресс глобален и воздействует на все системы организма. В пределах нескольких секунд, развивается несколько процессов. Характерные процессы ответа на стресс включают мобилизацию запасенной энергии с ингибированием последующего хранения энергии и глюконеогенеза, обостренное, сосредоточенное внимание на воспринятую угрозу, увеличение мозговой перфузии и использование глюкозы мозгом, увеличение активности сердечно-сосудистой системы и дыхания, увеличение доставки субстратов энергии к мышцам, ингибирование репродуктивной физиологии и поведения, модуляция иммунной функции и уменьшение аппетита. В ситуациях потери жидкости, например при кровоизлиянии, задержка жидкости (water retention) происходит через почечные и сосудистые механизмы.

Организованное взаимодействие нескольких нейротрансмиттерных систем в мозге лежит в основе феменологии поведенческих, эндокринных, висцеральных, вегетативных и иммунных ответов. Эти трансмиттеры включают CRH, AVP, опиодные пептиды, дофамин и норадреналин. Вне мозга, наблюдается увеличение секреции гипофизом пролактина и панкреатическая секреция глюкагона. Кроме того, имеется глобальное сокращение NPY в мозге и уменьшение гипоталамного производства гонадотропинвысвобождающего гормона (GnRH), сопровождаемое уменьшением секреции гонадотропинов гипофиза. При геморрагическом стрессе, также отмечена активация системы ренин-ангиотензин.

Кортикотропинвысвобождающий гормон (CRH)

Вскоре после его выделения, в нескольких исследованиях было показано, что CRH вовлечен в другие компоненты ответа на стресс, возбуждение (состояние настороженности и повышенного отклика на внешние раздражители) и вегетативную активацию. Такие свидетельства были первоначально получены в многочисленных исследованиях, которые сообщили об уменьшении некоторых характеристик ответа на стресс после интрацеребровентикулярного или селективного введения в мозг CRH у грызунов и у нечеловекообразных приматов. Более убедительные свидетельства были получены после обнаружения подавления многих аспектов ответа на стресс после введения в мозг антагонистов CRH. Ранее было обнаружено, что CRH тип 1 рецептор (CRH-R1) подвергнутых шоку мышей имеет заметно пониженную способность производить эффективный ответ на стресс.

Некоторые из ядер гипоталамуса содержат CRH клетки, включая преоптическую область, дорсомедиальное ядро, дугообразное ядро, задний гипоталамус и мамиллярное ядро. Паравентрикулярное ядро гипоталамуса содержит большинство CRH клеток, которые стимулируют секрецию гормона гипофиза ACTH. Эти нейроны находятся в парвоцеллюлярной области паравентрикулярного ядра и нервные аксоны этих нейронов достигают срединного возвышения. CRH также обнаружен в небольшой группе PVN нейронов, которые находятся в стволе мозга и спинном мозге. Эти нейроны вовлечены в регулирование функции вегетативной нервной системы.

Производящие кортикотропинвысвобождающий гормон клетки также обнаружены в миндалевидном теле, substantiainnominata и bednucleusofthestriaterminalis. CRH нейроны в миндалевидном теле проецируются в парвоцеллюлярные области PVN и парабрахиального ядра ствола мозга. Это проецирование может объяснять нейроэндокринные, вегетативные и поведенческие эффекты CRH. CRH нейроны, находящиеся в bed nucleus of the stria terminalis взаимодействуют с терминальным парабрахиальным ядром и дорсальным вагальным комплексом ствола мозга, чтобы координировать вегетативную деятельность. CRH волокна также связывают миндалевидное тело с bednucleusofthestriaterminalisи гипоталамусом.

CRH нейроны в cerebral cortex могут быть важны в поведенческих действиях этого пептида. CRH вставочные нейроны содержатся во втором и третьем слое коры мозга и проецируются в слои I и IV. Кроме того, отдельнве CRH клетки присутствуют в более глубоких слоях. Самая высокая плотность CRH нейронов найдена в префронтальных, инсулярных и cingulate областях. Распределение CRH в этих областях может объяснить его эффект на обработку информации.

Стресс - мощный активатор производства CRH гипоталамусом и внегипоталамическими областями. Механизмы, посредством которых стресс стимулирует CRH нейроны, неясны. Участвует ли в этом процессе CRH или другой трансмиттер (например, норадреналин) пока не установлено.

Участки закрепления CRH найдены в аденогипофизе, во всем мозге и на различных периферийных участках, типа мозгового вещества надпочечников, предстательной железы, кишечника, селезенки, печени, почкек и тестикул. CRH рецепторы принадлежат к группе с семью трансмембранными фрагментами, в которых закрепление CRH стимулирует внутриклеточное накопление cAMP. Были обнаружены два различных подтипа CRH рецепторов обозначаемые как CRH-R1 и CRH-R2. Эти два подтипа рецепторов кодируются различными генами.

Подтип CRH-R1 широко распространен в мозге крысы, главным образом в neocortex и мозжечке. CRH-R1 - наиболее многочисленный подтип, найденный в аденогипофизе. CRH-R2 рецепторы обнаружены главным образом в периферийной сосудистой сети и сердце, также как и в подкорковых структурах мозга, типа перегородки (septum), миндалевидного тела и гипоталамуса у грызунов. У нечеловекообразных приматов CRH-R2 был найден в центральных и периферийных областях. CRH-R2 рецептор был найден в миндалевидном теле человека. У макак-резусов, CRH-R1 и CRH-R2 рецепторы найдены в гипофизе, neocortex, миндалевидном теле и гиппокампе. CRH-R1, но не CRH-R2, рецепторы присутствуют в голубоватом месте, мозжечке, таламусе и полосатом теле. CRH-R2, но не CRH-R1, рецепторы найдены в сосудистой оболочке и ядре bednucleusofthestriaterminalis.

Ведение небольших доз CRH производит увеличение двигательной активности. Наоборот, высокие дозы CRH производят уменьшение двигательной активности. Интрацеребральное введение CRH производит дополнительные поведенческие эффекты, включая конфликт со знакомой окружающей средой, ослабление полового поведения и увеличении конфликтности в незнакомой окружающей среде. Поведенческие эффекты CRH не являются косвенным последствием его действия на гипофиз, так как они не наблюдаются при предварительном введении дексаметазона, который блокируют активацию оси гипофиз-надпочечники. Большинство вышеупомянутых эффектов CRH может быть блокировано введением антагонистов CRH, что поддерживает гипотезу, что это поведение имеет специфическую связь с CRH рецепторами. Кроме того, антагонисты CRH рецепторов уменьшают многие из поведенческих последствий стресса, что подчеркивает медиаторную роль эндогенных пептидов во многих связанных с ответом на стресс поведенческих нарушениях.

CRH действует на мозг, чтобы активизировать симпатическую нервную систему с последующим возбуждением секреции адреналина мозговым веществом надпочечников и норадренергического оттока к сердцу и почкам. Другие последствия действия CRH включают увеличение среднего артериального давления и частоты сердечных сокращений. При этом CRH ингибирует парасимпатическую сердечную активность. На периферии CRH вызывает вазодилацию (vasodilation) и гипотензию.

Физиологическая роль CRH в регулировании вегетативной нервной системы поддерживается данными, демонстрирующими эффект антагонистов CRH рецепторов alpha-helical CRH (9-41) на уменьшение индуцированной стрессом секреции адреналина.

CRH стимулирует электрическую активность нейронов в различных мозговых областях, которые содержат CRH рецепторы, включая голубоватое место, гиппокамп, кору мозга и гипоталамус а также двигательные нейроны спинного мозга. Напротив, CRH имеет ингибирующее действие на боковую перегородку (lateral septum), таламус и гипоталамный PVN. Активация системы голубоватое место-норадреналин приводит к активизации и увеличению бессонницы. Дисфункция этой системы вовлечена в патофизиологию депрессии и беспокойства.

CRH вызывает генерализованное увеличение электроэнцефалографической активности связанное с бессонницой и уменьшением временем сна. В низких дозах CRH воздействует на двигательную активность и гипофиз-надпочечную функцию, крысы остаются активными и бдительными и показывают уменьшение медленного сна. Высокие дозы CRH стимулируют возникновение приступов, которые являются неразличимыми от приступов, произведенных электрическим раздражением миндалевидного тела, что подтверждает роль CRH в активации мозга.

Механизмы, которые включают и выключают ответ на стресс неясны. Однако, имеется разрозненная информация относительно управления секреции CRH другими трансмиттерными системами. Антагонисты гаммааминобутуровой кислоты (GABA) и бензодиазепин имеют подавляющий эффект на CRH нейроны, принимая во внимание, что холинергические и серотонинергические нейроны стимулируют производство CRH.

Норадреналин и опиодные пептиды имеют стимулирующие и подавляющие эффекты на производство CRH в зависимости от дозы и вовлеченного подтипа рецептора.

Глюкокортикоиды - мощные ингибиторы производства CRH. Ингибирование производства CRH глюкокортикоидами установлено непосредственно на уровне PVN гипоталамуса, а также косвенно, через действие на CRH рецепторы в гиппокампе. Глюкокортикоиды проявляют стимулирующую роль на CRH нейроны в миндалевидном теле и возможно в системе голубоватое место-норадреналин. Последний эффект может иметь фундаментальную важность в пролонгировании эффектов серьезного стресса, создавая петлю положительной обратной связи между системами норадреналином и CRH.

При нормальном состоянии, имеется баланс между CRH пептидами и плотностью CRH рецепторов. Стресс или адреналэктомия приводят к гиперсекреции CRH и последовательного уменьшения рецепторов в аденогипофизе. Аналогично, хроническое введение кортикостерона вызывает дозозависимое уменьшение числа CRH рецепторов в аденогипофизе. Напротив, повреждение PVN, приводит к сильному сокращению гипоталамной секреции CRH и увеличивает плотность CRH рецепторов в гипофизе. Эффекты CRH и продуктов гипофиз-надпочечной активации на CRH рецепторы мозга, которые отвечают за поведенческие и вегетативные аспекты, могут быть различны, то есть CRH увеличивается быстрее, чем уменьшаются его собственные рецепторы.