Смекни!
smekni.com

Рынок медицинских услуг (стр. 4 из 5)

Данные трехмерного исследования дополняют и уточняют картину, полученную «по старинке». С его помощью можно добыть важные сведения о некоторых пороках развития, особенно конечностей, таких частей тела, как лицо, руки, позвоночный столб. Если врач заподозрил неладное после 2D-исследования, он может назначить сеанс трехмерного УЗИ. То есть сочетание двух методов дает наиболее ясное представление о состоянии будущей мамы и крохи.

Кстати сказать, не всегда мама, да и врач тоже, могут ясно и отчетливо увидеть чадо на экране. Это зависит от нескольких моментов: положения крохи в утробе; активности малютки. Чем больше он двигается, тем яснее будет изображение и интереснее «кадры». Если кроха не желает «дефилировать», врач может предложить прекратить на время исследование и возобновить его через некоторое время. В этот момент маме рекомендуется выпить какой-нибудь сладкий напиток. Это, как правило, «возбуждает» малыша через 10-15 минут; расположения пуповины и плаценты; количества околоплодных вод. Чем их меньше, тем хуже изображение; избыточного веса будущей мамы; наличия рубцов на животе после перенесенных операций.

Что же увидит на экране мама во время сеанса трехмерного УЗИ? Это зависит от срока беременности. Рассмотреть зарождающуюся внутри вас жизнь можно уже в первые недели после зачатия, когда размер эмбриона составляет всего 15 миллиметров.

К 8-ой неделе уже можно различить головку и туловище эмбриона, формирующиеся конечности. И, главное, понять, а не ожидаете ли вы двойню.

С 10-й по 16-ю недели можно увидеть малыша, так сказать, во всей красе: позу, в которой он лежит, ручки, ножки, пуповину. Личико вы тоже увидите, но оно еще совсем не похоже на лицо человека.

15-30 недель - самое подходящее время для настоящего знакомства. После 20 недели уже можно различить каждый пальчик малютки. С 28 недели, если повезет, вы сможете увидеть, как он улыбается, сосет пальчик, «почесывается», сжимает кулачки и строит забавные рожицы. После 23-25 недель чадо становится настолько большим, что получить его изображение целиком практически невозможно. На экране поочередно можно увидеть голову, плечики, ручки, туловище, ножки.

Дополнительно, по рекомендации врача, на сроке 15-16 недель можно проверить нервную систему малыша, в 26-29 недель - наличие воспалительных процессов, в 33-34 недели - исключить развитие гипотрофии.

Если сделать несколько сеансов трехмерного УЗИ на протяжении всей беременности, можно «отснять» целый документальный фильм о жизни крохи до рождения. Вам разве не было бы интересно, как там жилось, внутри? Наверно, и ваш малыш не откажется от таких впечатлений, когда подрастет. И на вопрос «Где я был, когда меня не было?», который всегда ставит родителей в тупик, вы будете отвечать легко и просто!

В России обязательным минимумом считается 4 посещения кабинета УЗИ-диагностики в течение 9 месяцев.

1-й раз: срок - до 7 недель.

Врач фиксирует присутствие плода в матке, чтобы исключить внематочную беременность.

2-й раз: срок 8-11 недель

Благодаря исследованию, на данном сроке можно выявить грубые аномалии в развитии ребенка, генетические заболевания. Кроме того, устанавливается срок беременности. Контролируется сформировавшаяся к этому моменту сердечная деятельность.

3-й раз: срок 19-21 неделя

Оценивается развитие основных внутренних органов и систем малыша, которые сформировались к этому времени.

4-й раз: за 2-3 недели до предполагаемого срока родов.

На данном сроке выявляются плацентарная или сосудистая недостаточность, фиксируется положение плода (вперед головкой или ягодичками), размер малыша и маминых родовых путей.

Провожая уходящий век, сообщество ведущих мировых производителей УЗ-медицинского оборудования вступает в динамичный период кардинальной смены поколений диагностических систем. Казавшиеся фантастическими еще каких-то десять лет назад, новые технические решения де-факто стали общепринятыми стандартами средств визуализиции. Применительно к УЗ-платформам речь прежде всего идет о широкомасштабном внедрении цифровой технологии формирования луча, используемой как при приеме, так и при излучении зондирующих сигналов. В сочетании с полномерной цифровой обработкой сигнала эта технология позволяет реализовывать новые подходы к формированию диаграммы направленности УЗ-датчиков. Что это за подходы и в чем их достоинства? Каково их практическое применение?

Цифровое формирование диаграммы направленности излучателей в УЗ-платформах позволяет добиться высокой идентичности амплитудно-частотных характеристик приемных каналов, скорректировать их в соответствии с заданным эталоном и легко устранять неизбежные технологические погрешности, возникающие в процессе изготовления датчиков. Это обеспечивает высокую чувствительность диагностической системы и длительную стабильность параметров тракта обработки сигнала. Благодаря отсутствию присущих аналоговым цепям параметрических уходов и потерь отпадает необходимость в частой калибровке устройства. Как следствие, эксплуатационная надежность диагностических платформ возрастает. Опираясь на цифровое диаграммообразование, можно эффективно динамически фокусировать излучение датчика по глубине исследуемого объекта, меняя весовые коэффициенты при фазировании в зависимости от номера отсчета АЦП или порядкового номера группы. При этом не нужно, как это делалось раньше, отключать часть излучателей, что приводило к потере энергии [1]. Появляется возможность чрезвычайно гибко управлять угловыми размерами, формой, направлением распространения, интенсивностью (в режиме зондирования) и разрешением (в режиме приема) УЗ-луча.

Реализация датчиков на базе цифровых решеток обеспечила одновременный многолучевой прием сигналов во всем рабочем секторе и тем самым позволила сократить время формирования УЗ-изображения. При этом сигнал передатчика может быть расфокусирован, “засвечивая” широкий телесный угол, а реализация сверхрелеевской разрешающей способности по направлениям прихода сигналов, их доплеровской частоте и времени задержки способствует достижению требуемой детализации изображения. Сегодня известен достаточно обширный арсенал методов обеспечения сверхрелеевского разрешения [2–4], позволяющих в зависимости от отношения сигнал/шум проводить раздельную селекцию до десяти “точечных” фантомов в пределах главного лепестка приемной диаграммы направленности УЗ-датчика. На рис. 1 представлены полученные автором результаты сверхрелеевского разрешения двух сигналов [4], соответствующие различным соотношениям начальных фаз радиоимпульсов.

В целом же благодаря высокому, недостижимому с помощью аналоговой техники динамическому диапазону цифровые методы формирования луча обеспечивают близкие к предельным значениям точность оценивания параметров сигналов, их осевое, поперечное и контрастное разрешение с улучшенной дифференциацией тканей по яркостному признаку. Кроме того, применение технологии цифрового диаграммообразования позволяет максимально унифицировать узлы и блоки аппаратуры, упростить процесс реконфигурации и модификации УЗ-систем, сводящийся зачастую лишь к замене программного обеспечения, а также адекватно цифровыми методами моделировать процессы, протекающие в тканях организма при прохождении УЗ-сигнала. И наконец, благодаря запоминанию и хранению практически в течение неограниченного времени больших информационных массивов, возможна их многократная модификация в процессе визуализации с помощью разнообразных программных фильтров, улучающих как восприятие УЗ-изображения, так и детализацию тонких анатомических структур.

Следует отметить, что техника цифрового диаграммообразования по сути отличается от методов, используемых в традиционных средствах цифровой обработки сигналов фазированных решеток излучателей. Основная особенность современных систем цифрового диаграммообразования – применение АЦП в каждом приемном канале с оцифровкой сигнала, как правило, на несущей частоте (рис.2). При этом исключаются операции преобразования частоты, детектирования сигналов с выделением огибающей и, тем самым, уменьшаются энергетические потери, повышается чувствительность приемной системы и упрощается конструкция установки. Тактовые импульсы разводятся от генератора так, чтобы АЦП приемных каналов срабатывали одновременно. Затем данные, описывающие в виде отсчетов АЦП или их частичных сумм мгновенное распределение УЗ-поля на раскрыве датчика, сбрасываются в буферное ЗУ. Дальнейшее формирование диаграммы направленности приемного луча осуществляется программным способом с помощью процессоров обработки сигнала (DSP), выполняющих синфазное суммирование значений напряжений всех сигналов для заданных угловых направлений. При цифровом формировании зондирующего луча – наоборот, синтезированные с помощью процессора сигнала цифровые значения напряжений зондирующего импульса поступают на ЦАП, с выхода которых снимаются усиленные и отфильтрованные аналоговые сигналы. Эти сигналы поступают на соответствующие УЗ-излучатели. Такой принцип цифрового диаграммообразования – достаточно общий. В конкретных устройствах он может быть изменен в соответствии с возможностями элементной базы, а также опытом и теоретической подготовкой разработчиков.

Среди производителей, успешно решающих проблемы цифрового диаграммообразования в современных УЗ-системах, прежде всего нужно отметить фирму Analog Devices – одного из крупнейших поставщиков сигнальных процессоров, АЦП и ЦАП. Пакет УЗ-сигналов в типичной УЗ-платформе фирмы генерирует электромеханический преобразователь передающей схемы, контактирующей с телом пациента (рис.3) [5]. Частота несущей в зависимости от модели датчика равна 1–13 МГц. В каждом приемном канале системы предусмотрен усилитель с цифровой временной регулировкой усиления (TGC) типа AD600/602/603, компенсирующий потери энергии эхосигналов, приходящих с глубины тела. В своих системах фирма чаще всего использует десятиразрядные АЦП типа AD 9040А с частотой дискретизации 40 МГц. Сигналы, снимаемые с выхода АЦП, суммируются и обрабатываются сигнальным процессором (как правило, схемы типа ADSP–2181, ADSP–2171 или ADSP–21062). В систему могут также входить доплеровский канал для измерения скорости кровотока и канал визуализации УЗ-изображения. Таким образом, в системах Analog Devices новейшие технологии реализуются на достаточно распространенной и отнюдь не экзотической элементной базе. Разработка 12-разрядных АЦП с максимальной частотой дискретизации 105 МГц (AD 9432) и 250-МГц сигнальных процессоров типа TigerSHARC служит предпосылкой для дальнейшего упрочнения позиций фирмы на рынке перспективного УЗ-оборудования.