Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 27 из 64)

ний в структуре, локализации и активности молекул мРНК и

белка, которые возникают вследствие генетических мутаций. Мы

уже упоминали об огромном значении культур мутантных клеток

для подобных исследований. Однако, многие патологические

процессы, протекающие в организме больного, не могут быть

исследованы in vitro. С другой стороны, возможности получе-

ния необходимого количества клеток и тканей пациента и испы-

тания in vivo различных схем лечения значительно ограничены.

Поэтому для многих наследственных болезней эффективность

изучения основ патогенеза существенным образом зависит от

наличия адекватных биологических моделей. Способы конструи-

рования таких моделей подробно изложены в Главе YIII.

ГЛАВА II.

ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.

Раздел 2.1. Определение генома и его основных элемен-

тов.

Термин геном используется для обозначения полной гене-

тической системы клетки, определяющей характер онтогенети-

ческого развития организма и наследственную передачу в ряду

поколений всех его структурных и функциональных признаков.

Понятие генома может быть применено к таксономической груп-

пе, виду, отдельной особи, клетке, микроорганизму или ви-

русу. Так, можно говорить о структуре генома эукариот и про-

кариот, сравнивать геномы разных видов, изучать особенности

строения генома у конкретных индивидуумов или следить за из-

менениями, происходящими в геноме специфических клеток в

процессе их онтогенетической дифференцировки. Часто геном

определяется как генетическая информация, заключенная в мо-

лекулах ДНК одной клетки. Однако, такие факты, как

отсутствие связи между количеством ДНК в расчете на гаплоид-

ный геном и таксономическим статусом видов, а также много-

численные примеры существования огромных различий в содержа-

нии ДНК между близкородственными видами (так называемый

"С-парадокс") свидетельствуют о том, что далеко не все

участки ДНК связаны с информационными функциями. Понятия ге-

нома и ДНК в значительной степени тождественны, так как

основные принципы организации и функционирования генома це-

ликом определяются свойствами ДНК. Присущие этим молекулам

потенциальные возможности практически неограниченного струк-

турного разнообразия определяют все многообразие мира живых

существ, как на уровне межвидовых, так и индивидуальных раз-

личий в пределах одного вида (Баев и др.,1990; Ратнер,1985).

Процесс эволюции и дифференцировки отдельных видов, как

правило, сопровождался накоплением изменений в структуре ге-

нома. Это касается, прежде всего, таких параметров, как ло-

кализация и характер упаковки ДНК в клетках; количество ДНК,

приходящееся на гаплоидный геном; типы, соотношение и функ-

ции кодирующих и некодирующих нуклеотидных последователь-

ностей; регуляция экспрессии генов; межпопуляционная вариа-

бильность и филогенетический консерватизм первичной структу-

ры генома. В пределах одного вида основные параметры генома

достаточно постоянны, а внутривидовое разнообразие обеспечи-

вается за счет мутационной изменчивости, то есть выпадения,

вставки или замены нуклеотидов на сравнительно небольших

участках ДНК. Чаще всего такие изменения касаются не-

экспрессируемых элементов генома (интронов, псевдогенов,

межгенных спэйсерных участков ДНК и т.д.).

Геномы эукариот, по-существу, можно рассматривать как

мультигеномные симбиотческие конструкции, состоящие из обли-

гатных и факультативных элементов (Golubovsky, 1995). Основу

облигатных элементов составляют структурные локусы, коли-

чество и расположение которых в геноме достаточно постоянно.

Присутствие в хромосомах некоторых видов повторяющихся ДНК,

амплифицированных участков, ретровирусных последователь-

ностей, псевдогенов, также как наличие в клетке эписом, рет-

ротранскриптов, ампликонов, дополнительных B-хромосом и раз-

личных цитосимбионтов (вирусов, бактерий, простейших) явля-

ется не строго обязательным, их количество и положение может

значительно варьировать, то есть эти элементы являются фа-

культативными. В то же время участие факультативных элемен-

тов в наследственной передаче признаков, в формировании му-

тационной изменчивости и в эволюционных преобразованиях ви-

дов несомненно доказано. Кроме того, существует непрерывный

переход от одних состояний к другим за счет инсерции

экстрахромосомных ДНК в хромосомы и выстраивания транспозо-

ноподобных мобильных элементов из хромосом. Следовательно,

несмотря на значительные отличия факультативных последова-

тельностей от облигатных по характеру основных информацион-

ных процессов (репликации, транскрипции, трансляции и сегре-

гации), они также должны рассматриваться, как важнейшие эле-

менты генома.

Остановимся теперь более детально на основных принципах

организации генома человека. В каждой диплоидной клетке с 46

хромосомами содержится около 6 пикограмм ДНК, а общая длина

гаплоидного набора из 23 хромосом составляет 3.5 * 10!9 пар

нуклеотидов (Kao, 1985). Этого количества ДНК достаточно для

кодирования нескольких миллионов генов. Однако, по многим

независимым оценкам истиное число структурных генов нахо-

дится в пределах от 50 000 до 100 000. В разделе 2.4 изложе-

ны современные подходы, используемые для подсчета общего ко-

личества генов, из которых следует, что наиболее вероятная

оценка их числа составляет около 80 000. Сопоставляя это

значение со средними размерами гена и соотношением между ве-

личиной их экзонных и интронных областей, можно заклю-

чить,что кодирующие последовательности ДНК занимают не более

10-15% всего генома (McKusick, Ruddle, 1977). Таким образом,

основная часть молекул ДНК не несет информации об амино-

кислотной последовательности белков, составляющих основу лю-

бого живого организма, и не кодирует структуру рибосомаль-

ных, транспортных, ядерных и других типов РНК. Функции этой

"избыточной" (junk) ДНК не ясны, хотя ее структура изучена

достаточно подробно. Предполагается, что эта ДНК может

участвовать в регуляции экспрессии генов и в процессинге

РНК, выполнять структурные функции, повышать точность гомо-

логичного спаривания и рекомбинации, способствовать успешной

репликации ДНК и, возможно, является носителем принципиально

иного генетического кода с неизвестной функцией.

Наиболее общая характеристика генома может быть получена

с помощью анализа кинетики реассоциации молекул ДНК. Динами-

ка плавления геномной ДНК обнаруживает присутствие по край-

ней мере трех различающихся по химической сложности фракций

(Льюин, 1987; Газарян, Тарантул, 1983). Быстро ренатурирую-

щая фракция ДНК состоит из относительно коротких высокопов-

торяющихся последовательностей; в промежуточную фракцию вхо-

дит множество умеренно повторяющихся ДНК - более протяжен-

ных, но представленных меньшим числом копий; медленно рена-

турирующая фракция объединяет в себе уникальные последова-

тельности ДНК, встречающиеся в геноме не более 1-2 раз.

С помощью молекулярного анализа проведена идентификация

основных классов повторяющихся последовательностей ДНК,

составляющих более 35% всего генома человека и включающих

сателлитную ДНК, инвертированные повторы, умеренные и низко-

копийные повторы, а также мини- и микросателлитные последо-

вательности ДНК. Классификация этих типов повторов достаточ-

но условна и основана, главным образом, на двух характе-

ристиках: длине повторяющихся коровых единиц, которая может

варьировать от 1-2 до более, чем 2000 п.о., и числе их ко-

пий, также меняющихся в очень широких пределах - от десятка

до миллиона на гаплоидный геном. Не менее важными характе-

ристиками различных классов повторяющихся ДНК являются нук-

леотидная последовательность "коровых" единиц повтора, спе-

цифичность их организации, хромосомная локализация, внутри-

и межвидовая стабильность, а также возможные функции этих

типов ДНК.

Раздел 2.2. Повторяющиеся последовательности ДНК.

Сателлитная ДНК это класс высокоповторяющихся последо-

вательностей, составляющих около 10% всего генома человека

(Kao, 1985). При центрифугировании геномной ДНК в градиенте

плотности CsCl эти последовательности образуют четыре от-

дельных сателлитных пика с различными средними значениями

плавучей плотности. Методом гибридизации in situ показано

присутствие сателлитной ДНК преимущественно в центромерных,

теломерных и гетерохроматиновых районах большинства хро-

мосом, при этом характер гибридизации сходен для всех четы-

рех групп и не зависит от принадлежности ДНК-зондов к се-

мействам повторов, образующих различные сателлитные пики. В

каждой из этих групп, однако, присутствует небольшое коли-

чество последовательностей, имеющих специфическую хромосом-

ную локализацию. Так например, около 40% длинного плеча Y

хромосомы составляет семейство последовательностей, тандемно

повторяющихся более 3000 раз и не найденных в других хро-

мосомах.

Выделяют три основных типа сателлитной ДНК: (1) короткие

- от 2 до 20 п.о., стабильные тандемные повторы с кратностью

в несколько десятков тысяч раз, которые иногда перемежаются

с неповторяющимися последовательностями; (2) кластеры более

протяженных повторов, слегка различающихся по нуклеотидной

последовательности; (3) сложные, достигающие нескольких со-

тен пар нуклеотидов, повторяющиеся последовательности раз-

личной степени гомологии (Газарян,Тарантул,1983). К послед-