При приближенных расчетах считают, что количество тепла, отдаваемого с поверхности кожи испарением, в основном зависит от количества испаренной влаги и от температуры кожи.
Теплоотдача в процессе дыхания:
нагревание воздуха и испарение влаги
Количество тепла, отдаваемого телом человека на нагревание воздуха в легких, зависит от количества прошедшего воздуха и его температуры при входе и выходе. А количество тепла, отдаваемого на испарение влаги, зависит от количества воздуха, прошедшего через легкие при дыхании и от содержания влаги во вдыхаемом и выдыхаемом воздухе. Оно определяется по формуле
Q = 0,001 mp, где
р – удельная теплота испарения воды, ккал/ч;
m – количество влаги, испаренной в легких за 1ч, ккал/ч; определяемое разностью содержания влаги во вдыхаемом и выдыхаемом воздухе.
1.3. Система теплорегуляции организма (физическая и химическая)
Терморегуляция – совокупность физиологических процессов, поддерживающих внутреннюю температуру тела на постоянном уровне.
Теплообразование зависит от интенсивности химических реакций обмена веществ, рост которого при охлаждении тела обеспечивается химической терморегуляцией. А физическая терморегуляция регулирует отдачу тепла организмом посредством физических процессов – теплопроводности, конвекции, излучения и испарения.
Химическая терморегуляция осуществляется изменением интенсивности окислительных процессов, вызванных микровибрацией мышц (колебаниями); а физическая – изменением температуры кожи, благодаря расширению (сужению) кожных сосудов, изменению интенсивности потоотделения и дыхания, являющихся реакцией на изменение температуры внешней среды, влажности воздуха и других факторов. Расширение сосудов кожи и увеличение количества притекающей крови ведет к усилению теплоотдачи, сужение их – к снижению ее.
Терморегуляция происходит рефлекторно благодаря раздражению температурных рецепторов кожи и слизистых оболочек, возникновению нервных импульсов, возбуждающих нервные центры.
ІІ. УРАВНЕНИЯ ТЕПЛОВОГО БАЛАНСА ОРГАНИЗМА С ОКРУЖАЮЩЕЙ СРЕДОЙ. ПРИБЛИЖЕННЫЕ ТЕПЛОВЫЕ РАСЧЕТЫ ОДЕЖДЫ
Основное назначение одежды – это защита организма человека от неблагоприятных воздействий внешней среды (ветер, туман, дождь и др.) и обеспечение теплового комфорта, который является условием нормальной жизнедеятельности человека. Необходимое условие сохранения длительного теплового комфорта – поддержание теплового баланса, который достигается путем терморегуляции организма и применения требуемой для данных условий одежды с искусственно регулируемым микроклиматом пододежного воздуха, характеризующегося температурой и влажностью. Основной же показатель теплового комфорта человека – это средневзвешенная температура поверхности тела (кожи), которая приблизительно одинакова для всех видов деятельности человека (≈330С – для кожи, покрытой одеждой). При этом учитывается, что пододежное пространство систематически вентилируется в связи с выделением кожи человека испарений влаги и углекислоты, которые должны удаляться.
Существуют аналитические методы теплового расчета одежды.
1) В процессе постоянного обмена веществ в организме человека в результате распада сложных химических соединений освобождается энергия. Она превращается в тепловую, электрическую и механическую энергии и обеспечивает протекание всех форм деятельности организма. Исходя из І и ІІ-го законов термодинамики энергетический баланс организма человека может быть описан уравнением:
M + J = Qрад. + Qконв. + Qисп. + Qдых. + Z, где
M – энергия, вырабатываемая в организме человека (теплопродукция), ккал/час;
Z – тепло, которое расходуется на механическую работу;
Qрад. – потери тепла радиацией (излучение), ккал/ч;
Qконв. – потеря тепла теплопроводностью и конвекцией;
Qисп. – потеря тепла испарением влаги с кожи и верхних дыхательных путей, ккал/ч;
Qдых. – потеря тепла на нагрев вдыхаемого воздуха, ккал/ч;
J – адсорбция тепла радиацией, ккал/ч.
Для расчета средневзвешенной температуры определяют общую поверхность тела, равную сумме поверхностей отдельных его частей методами антропометрии. Наиболее распространенных из них – линейный метод Дюбца: поверхность тела делится на отдельные части – голову, туловище, верхние и нижние конечности, а поверхности этих частей тела производятся по формулам (определяются), выведенным на основании антропометрических измерений человека.
Соотношение поверхности частей к общей поверхности тела:
голова – 7,36% бедро – 20,3%
туловище – 35,5% голень – 12,5%
плечо и предплечье – 13,4% стопа – 6,44%
кисть – 4,5%
Расчет средневзвешенной величины температуры поверхности тела человека осуществляется по следующей формуле:
n
tср.взв.к. = Σ • ti • Si/Sобщ. , где
i
ti – температура в иpмеряемой точке участка поверхности тела;
Si – площадь поверхности данного участка тела;
Sобщ. – общая площадь поверхности тела.
Для проектирования одежды важным является то, что человек может испытывать комфортные ощущение и при некотором нарушении теплового равновесия. Это результат существования "резерва" тепла организма человека, который используется им в случае охлаждения (1272 - 2448 ккал) и находится во внешних слоях тканей организма, на глубине 2-3 см от кожи. Величина его зависит от веса человека и температуры тела:
D = CP (0,7tТ + 0,3tК)
D – дефицит тепла в организме, ккал;
C – удельная теплоемкость тела человека, равная в среднем 0,83 ккал/кг • град;
P – вес тала человека, кг;
tт – температура тела в 0С;
tк – температура кожи в 0С.
Расчет радиационно-конвективных теплопотерь и требуемого теплового сопротивления одежды производится по методике ЦНИИШП с учетом величины энергозатрат человека (М), времени пребывания его в заданных метеорологических условиях (τ), температуры окружающей среды (tB), скорости ветра (vB) и воздухопроницаемости одежды.
1. Определяем энергию, затраченную человеком на механическую работу: Z = (M - Mосн.) • 10% / 100%;
2. Qисп.=[(M+D/t)-Z] • 20/100% • [(H+D/t) • (M-Mосн.)•10% / 100%] • 20/100%
3. Qисп. = (M+D/t) - Z - Qисп. - Qдых. = Q72М +0,028Мосн. + 0,8D/t - Qдых.
Зная величину радиационно-конвективных теплопотерь, можно определить плотность теплового потока с поверхности тела человека:
q = Qрад-конв. / Sобщ.
Общая площадь тела человека находится как зависимость площади поверхности тела человека от его роста и веса.
Суммарное тепловое сопротивление одежды определяется по формуле:
Rсум. = tср.взв.к - tB / q
При этом ввиду того, что тепловое сопротивление одежды падает при повышении скорости ветра, необходимо установить поправку на ветер к Rсум. с учетом воздухопроницаемости материалов одежды.
2) Метод Г.Кондратьева. За критерий комфорта принята средняя температура кожи также.
Учитывая І-ый закон термодинамики, т.е. закон термодинамики – Закон сохранения энергии, тепловой баланс тела человека выражается уравнением: M = Q + Q׀ + L + E + A, где
М – теплопродукция, ккал/ч;
Q – теплоотдача через кожу, покрытую одеждой;
Q׀ – теплоотдача через кожу, не покрытую одеждой;
Е – теплоотдача через дыхательные пути;
L – потеря тепла на механическую работу;
А – накопление энергии в виде теплоты в организме (внутри).
Величины Q׀ и А незначительны, поэтому в приближенном расчете исключаются: M = Q + L + E
Величины L и Е составляют некоторые доли от М: L = хМ, Е = уМ, где х,у – правильные дроби, показывающее тепло, теряемое в результате внешней механической работы (х) и при дыхании (у).
Таким образом, получаем полное количество тепла, которое проходит сквозь одежду, т.е.
Q = М (1 - х - у)
Полагая, что х≈0,20, у≈0,24 при длительной работе, получим Q=0,56М или Q=qS, где
q – удельный тепловой поток, тепловая нагрузка одежды;