Введение.
Активным средством в руках врача, с помощью которого он может влиять на течение того или иного заболевания, является лекарственный препарат.
Лекарственное средство в руках знающего врача приносит огромную пользу людям. Незнание лекарственных средств, неумение пользоваться ими, низкие морально-этические требования к себе могут привести к непоправимым последствиям для больного человека.
Нередко перед врачом стоит сложная задача - выбрать из большого арсенала лекарственных средств не только самое эффективное, но и наименее токсичное, а также уменьшить риск появления побочного действия. Это в значительной мере обусловлено тем, что при различных условиях одно и то же вещество может оказаться лекарством или ядом. Так, стрихнин, морфин, фосфакол и другие ядовитые и сильнодействующие лекарственные вещества в сравнительно небольших, так называемых терапевтических дозах оказывают лечебный эффект. С увеличением доз этих ЛС выше допустимых они могут проявлять токсическое действие, нередко приводящее к тяжелым последствиям. Иногда обычные дозы ЛС вместо желаемого действия могут оказать отрицательное влияние на организм, что связывают с индивидуальной чувствительностью больных к этому ЛС. Отсюда вытекает необходимость знания особенностей фармакодинамики и фармакокинетики лекарственных средств в повседневной деятельности провизора.
Фармакодинамика - раздел фармакологии, изучающий совокупность эффектов лекарственных средств и механизмы их действия.
Механизмы действия лекарственных средств.
Подавляющее большинство лекарственных средств оказывает лечебное действие путем изменения деятельности физиологических систем клеток, которые вырабатывались у организма в процессе эволюции. Под влиянием лекарственного вещества в организме, как правило, не возникает новый тип деятельности клеток, лишь изменяется скорость протекания различных естественных процессов. Торможение или возбуждение физиологических процессов приводит к снижению или усилению соответствующих функций тканей организма.
Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток. Подробно механизмы действия лекарственных веществ изучаются в курсе общей или экспериментальной фармакологии. Ниже мы приводим лишь некоторые примеры основных механизмов действия лекарственных средств.
Действие на специфические рецепторы. Рецепторы - макромолекулярные структуры, избирательно чувствительные к определенным химическим соединениям. Взаимодействие химических веществ с рецептором приводит к возникновению биохимических и физиологических изменений в организме, которые выражаются в том или ином клиническом эффекте.
Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, - антагонистами. Антагонизм может быть конкурентным и неконкурентным. В первом случае лекарственное вещество конкурирует с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть устранена большими дозами вещества-агониста или естественного медиатора.
Разнообразные рецепторы разделяют по чувствительности к естественным медиаторам и их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинергическими, чувствительные к адреналину - адренергическими. По чувствительности к мускарину и никотину холинергические рецепторы подразделяются на мускариночувствительные (м-холинорецепторы) и никотиночувствительные (н-холинорецепторы). Н-холинорецепторы неоднородны. Установлено, что их отличие заключается в чувствительности к различным веществам. Выделяют н-холинорецепторы, находящиеся в ганглиях автономной нервной системы, и н-холинорецепторы поперечнополосатой мускулатуры. Известны различные подтипы адренергических рецепторов, обозначаемые греческими буквами ?1,? 2, ?1, ?2.
Выделяют также H1- и Н2-гистаминовые, допаминовые, серотониновые, опиоидные и другие рецепторы.
Влияние на активность ферментов. Некоторые лекарственные средства повышают или угнетают активность специфических ферментов. Например, физостигмин и неостигмин снижают активность холинэстеразы, разрушающей ацетилхолин, и дают эффекты, характерные для возбуждения парасимпатической нервной системы. Ингибиторы моноаминоксидазы (ипразид, ниаламид), препятствующие разрушению адреналина, усиливают активность симпатической нервной системы. Фенобарбитал и зиксорин, повышая активность глюкуронилтрансферазы печени, снижают уровень билирубина в крови.
Физико-химическое действие на мембраны клеток. Деятельность клеток нервной и мышечной систем зависит от потоков ионов, определяющих трансмембранный электрический потенциал. Некоторые лекарственные средства изменяют транспорт ионов.
Так действуют антиаритмические, противосудорожные препараты, средства для общего наркоза.
Прямое химическое взаимодействие. Лекарственные средства могут непосредственно взаимодействовать с небольшими молекулами или ионами внутри клеток. Например, этилендиаминтетрауксусная кислота (ЭДТА) прочно связывает ионы свинца. Принцип прямого химического взаимодействия лежит в основе применения многих антидотов при отравлениях химическими веществами. Другим примером может служить нейтрализация соляной кислоты антацидными средствами.
Связь "доза-эффект"
Является важным фармакодинамическим показателем. Обычно этот показатель представляет собой не простое арифметическое отношение и может графически выражаться по-разному: линейно, изогнутой вверх либо вниз кривой, сигмоидальной линией.
Каждое лекарство обладает рядом желательных и нежелательных свойств. Чаще всего при увеличении дозы лекарства до определенного предела желаемый эффект возрастает, но при этом могут возникать нежелательные эффекты. Лекарство может иметь не одну, а несколько кривых отношения "доза-эффект" для его различных сторон действия. Отношение доз лекарства, при которых вызывается нежелательный или желаемый эффект, используют для характеристики границы безопасности или терапевтического индекса препарата. Терапевтический индекс препарата можно рассчитывать по соотношению его концентраций в плазме крови, вызывающих нежелательные (побочные) эффекты, и концентраций, оказывающих терапевтическое действие, что более точно может характеризовать соотношение эффективности и риска применения данного лекарства.
Методы для изучения фармакодинамики
Методы для изучения фармакодинамики должны обладать рядом важных свойств:
а) высокой чувствительностью - способностью выявлять большую часть тех отклонений от исходного состояния, на которое пытаются воздействовать, а также оценивать положительные изменения в организме.
б) высокой специфичностью - способностью относительно редко давать "ложноположительные" результаты.
в) высокой воспроизводимостью - способностью данным методом стабильно отображать характеристики состояния больных при повторных исследованиях в одинаковых условиях у одних и тех же больных при отсутствии какой-либо динамики в состоянии этих больных по другим клиническим данным.
Фармакокинетика - раздел клинической фармакологии, предметом которого является изучение процессов всасывания, распределения, связывания с белками, биотрансформации и выведения лекарственных веществ. Фармакокинетика является относительно новой наукой. Ее развитие стало возможным благодаря разработке и внедрению в практику высокочувствительных методов определения содержания лекарственных веществ в биологических средах - газожидкостной хроматографии, радиоиммунных, ферментно-химических и других методов, а также благодаря разработке методов математического моделирования фармакокинетических процессов.
Фармакокинетические исследования проводятся специалистами в области аналитической химии, провизорами, фармацевтами, биологами, но результаты могут быть очень полезны для врача. На основании данных о фармакокинетике того или иного препарата определяют дозы, оптимальный путь введения, режим применения препарата и продолжительность лечения. Регулярный контроль содержания лекарственных средств в биологических жидкостях позволяет своевременно корригировать лечение.
Знание основных принципов фармакокинетики, умение ими пользоваться на практике приобретают особое значение в случаях, когда неясны причины неэффективности лечения или плохой переносимости больным лекарственного препарата, при лечении больных, страдающих заболеваниями печени и почек, при одновременном применении нескольких лекарственных средств и др.
Фармакокинетические исследования необходимы при разработке новых препаратов, их лекарственных форм, а также при экспериментальных и клинических испытаниях лекарственных средств.
Процессы, происходящие с лекарственными препаратами в организме, могут быть описаны с помощью ряда параметров.
Константы скорости элиминации (Кеl), абсорбции (Ка) и экскреции (Кех) характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость поступления его из места введения в кровь и скорость выведения с мочой, калом, слюной и др.
Период полувыведения (T1/2) - время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (Т1/2= 0,693/Kel). Период полуабсорбции (Т1/2,() время, необходимое для всасывания половины дозы препарата из места введения в кровь, пропорционален константе скорости абсорбции (Т1/2,(=0,693/Ка).
Распределение препарата в организме характеризуют период полураспределения, кажущаяся начальная и стационарная (равновесная) концентрации, объем распределения. Период полураспределения (Т1/2,() - время, необходимое для достижения концентрации препарата в крови, равной 50% от равновесной, т.е. при наличии равновесия между кровью и тканями. Кажущаяся начальная концентрация (Со)- концентрация препарата, которая была бы достигнута в плазме крови при внутривенном его введении и мгновенном распределении по органам и тканям.