Смекни!
smekni.com

Что такое стволовые клетки (стр. 2 из 3)

Каковы же взаимоотношения стволовых и камбиальных клеток? Возможны ли их взаимопревращения, может ли региональная стволовая или прогениторная клетка (клетка-предшественник) дать начало камбиальной и наоборот, происходит ли этот процесс в организме, каково его значение для нормального течения восстановительных процессов и каков (если он существует) его молекулярно-генетический механизм? Решение этих вопросов имеет важное не только фундаментальное, но и практическое значение. Изучение стволовых клеток в разных экспериментальных условиях, бесспорно, поможет найти ответы и позволит представить в новом свете тонкие механизмы восстановительных процессов, протекающих в организме. Такие работы уже начаты, в частности на стволовых клетках эпителиального покрова кожи. Результаты противоречивы и дают повод для дискуссий.

При этом следует учитывать, что в самую начальную фазу дифференцировки с разной степенью эффективности включается несколько программ, и судьба клеток еще однозначно не решена. Например, в развивающемся нейробласте, дифференцирующемся в катехоламинэргическом направлении, синтезируются не только мРНК для компонентов катехоламинэргической системы, но и мРНК для компонентов холинэргической системы. Если в определенный момент развития сменить катехоламинэргическую мишень, иннервируемую данной клеткой, на холинэргическую, то ранее более интенсивный синтез «катехоламинэргических» РНК начнет тормозиться и возобладает синтез «холинэргических» РНК. В результате произойдет как бы перепрограммирование клетки на новый путь развития.

Стволовые клетки, встречающиеся в шиповатом слое эпидермиса кожи, чьи клетки уже не делятся и активно специализируются, как раз и могут быть «мигрантами» из очага стволовых клеток. Мне доводилось встречать такие клетки в дифференцирующейся автономной нервной системе эмбрионов человека. Иными словами, ситуация с «превращениями» стволовых клеток и их взаимоотношениями с камбиальными клетками далеко не так проста, как это может показаться на первый взгляд.

Изменились ли представления о клеточной дифференцировке с открытием стволовых клеток?

Вопреки утверждению некоторых авторов — пока нет. Во-первых, дифференцировка любых стволовых клеток происходит по законам, сформулированным для клеточной дифференцировки вообще. В этом и заключается ценность стволовых клеток как модельной системы. Во-вторых, клетки, в том числе и стволовые, начав дифференцировку, утрачивают способность к делению, по крайней мере на конечных стадиях. И, наконец, изучение поведения стволовых клеток не поколебало представлений о стабильности и необратимости клеточной дифференцировки: из фиброцита, плазматической или из париетальной клетки желудка никогда не получится нейрон, а из нейрона не возникнет кожная клетка. Тезис, что стволовая клетка способна к разного рода трансформациям, никак не нарушает это правило, а лишь демонстрирует мультипотентность, свойственную ранним эмбриональным клеткам. На стадии терминальной дифференцировки клетка обретает стабильное состояние и теряет способность к делению и разного рода превращениям.

Что же нового дало открытие стволовых клеток во взрослом организме? Оно изменило наши представления об организации тканей и о механизмах протекающих в них восстановительных процессов. Был сделан новый и очень важный вывод: эмбриональные клетки с высоким потенциалом к развитию сохраняются и во взрослом организме. Более того, они составляют важнейшее звено в цепи репаративных процессов, о чем ранее не подозревали. Так, описывая в 70-е годы эмбриональные клетки в печени взрослой мыши (в книге «Взаимодействие генов в развитии». М., 1977), я не предполагал, что они обладают столь высоким потенциалом к развитию и принимают активное участие в репарации.

Открытие стволовых клеток повлекло необходимость замены существовавшей до сих пор схемы репаративных процессов в тканях:

на новую схему, отражающую существование стволовых клеток во взрослом организме:

В ходе клеточного деления из стволовых клеток возникают материнская и дочерняя клетки. Материнские используются для самоподдержания популяции, а дочерние либо «выходят» в камбиальную клетку, либо непосредственно в дифференцировку. Стволовая клетка сохраняет свойства ранних эмбриональных клеток — плюрипотентность, а камбиальная эту способность утрачивает и производит лишь региональные структуры.

Таким образом, в изучении восстановительных процессов сделан большой шаг вперед. Но предстоит еще очень много сделать, чтобы познать тонкие механизмы поведения стволовых клеток и найти возможность использовать эти знания в клинической практике.

Ситуация в данном случае непростая. Она осложняется еще и присутствием маркеров, которые специфически «метят» стволовые клетки и их производные. В частности, в базальном, ростовом слое эпителия кожи имеется стволовых клеток 10%, а белок b1-интегрин, специфический маркер этих клеток, содержится у 40% клеток этого слоя. В связи с этим сообщения о взаимопревращениях и трансформациях кожных (да и других тоже!) стволовых клеток требуют серьезной экспериментальной проверки.

Трансдетерминация и трансдифференцировка

В связи с необычайно широким потенциалом стволовых клеток возникает путаница с понятиями трансдетерминации и трансдифференцировки. В результате принятые в гистологии и эмбриологии терминологические правила размываются и возникает почва для бесплодных дискуссий и спекуляций.

Действительно, если трансформацию стволовых клеток в разных направлениях обозначить как трансдифференцировку (а некоторые авторы позволяют себе такую вольность), будут необоснованно разрушены представления о стабильности и необратимости дифференцировки, что ведет к невообразимой путанице. На самом деле нет никаких оснований ниспровергать существующие взгляды. Совершенно очевидно, что клетка, потерявшая способность к делению и вступившая на определенный путь развития (например, нейробласта), не может дать начало другим производным. Добиться репрограммирования ядра не так-то просто. Даже его пересадка в другую цитоплазму (в частности, при получении гетерокарионов или в опытах с пересадкой ядер), и то не всегда успешна.

Зарегистрированные случаи трансформации стволовых клеток относятся к другому событию — трансдетерминации. Процесс этот давно известен в экспериментальной эмбриологии благодаря работам выдающегося швейцарского эмбриолога и генетика Эрнста Хадорна. Описанное в ряде работ «превращение» глиальной клетки в нейрон объясняется, видимо, гетерогенностью популяции глиоцитов, т.е. некоторые из них могут сохранять свойства камбиальности, а порою и «стволовости». В таком случае обнаруженный феномен удивления не вызывает. Например, показано, что клетки так называемой радиальной глии, которая на ранних этапах онтогенеза служит субстратом для миграции дифференцирующихся нервных клеток, становятся нейронами. Однако потом выяснилось, что на самом деле популяция клеток радиальной глии гетерогенна: часть клеток содержит нейральные маркеры (они впоследствии становятся нервными), а часть — глиальные (такие и становятся глиальными). Иными словами, несмотря на то, что все клетки радиальной глии вначале выполняют одну и ту же временную функцию, они уже детерминированы к развитию в разных направлениях. Значит, обнаруженный феномен их трансформации — не трансдифференцировка, а трансдетерминация.

Как стволовые клетки поддерживают свою «молодость»

Одна из важнейших общебиологических проблем, решить которую помогут стволовые клетки, — генетический механизм поддержания детерминированного состояния в ходе деления клеток и выхода их в дифференцировку. Всерьез ее поставил еще Э.Хадорн в 50-е годы прошлого века, но до сих пор она не решена. Недавно удалось пролить некоторый свет на молекулярно-генетические события при переходе клетки из детерминированного состояния в дифференцировку. Наша соотечественница Наталья Тулина, работающая в США, заметила, что для такого перехода очень важно взаимоотношение стволовых клеток с клетками-«нишами», к которым они «прилежат». Так, в семенниках дрозофилы соматические клетки «хаба», формирующие нишу стволовых клеток, содержат белок UPD, который, в свою очередь, активирует так называемый сигнальный каскад Jak-STAT. Усиленный синтез UPD в клетках апикального района семенников приводит к росту и репродуктивных, и стволовых клеток семенника. Для поддержания обоих типов клеток необходимо участие компонентов Jak-STAT сигнального каскада, киназы НОР и транскрипционного активатора STAT92E. Активацию всего комплекса белков запускает UPD, который клетки-«ниши» передают стволовым клеткам. Разрыв связи между ними обусловливает начало дифференцировки стволовых клеток (рис.4). Насколько универсален этот механизм, предстоит еще выяснить.

Рис.4. Схема поддержания «стволовости» клеток в семенниках дрозофилы по данным Натальи Тулиной.

1, 2 и 3 — стадии взаимодействия с комплексом мембранных белков,

4 — активация сигнального белка STAT,

5 — активация генов стволовой клетки.

Проблемы генной и клеточной терапии

Плюри- и мультипотентность стволовых клеток делает их идеальным материалом для трансплантационных методов клеточной и генной терапии. Наряду с региональными стволовыми клетками, которые при повреждении тканей соответствующего органа мигрируют к зоне повреждения, делятся и дифференцируются, образуя в этом месте новую ткань, существует и «центральный склад запчастей» — стромальные клетки костного мозга. Эти клетки универсальны. Они, видимо, поступают с кровотоком в поврежденный орган или ткань и там под влиянием различных сигнальных веществ продуцируют взамен погибших нужные клетки (хотя полученные многочисленные данные такого рода нередко критикуются и требуют дополнительной проверки).